
MULTIPLICATIVE FUNCTIONS
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Abstract. These notes were first written for a 16 lecture graduate course at the University
of Cambridge, delivered remotely via Zoom, during Michaelmas Term 2020.

Preamble

Course content
The classical proof of the prime number theorem, using Cauchy’s residue theorem from
complex analysis, is a beautiful piece of mathematics. It is also a little troubling. How can
we really claim to understand the properties of the integers under multiplication if we have
to resort to such witchcraft as the residue theorem?

In recent years there has been a movement, spearheaded by Andrew Granville and Kannan
Soundararajan but building on earlier work of many people, to consider an alternative
approach to the subject, one which avoids the use of the residue theorem. This has involved
turning the focus away from the primes themselves and focussing instead on multiplicative
functions. The programme has had numerous successes, not just in reinterpreting pre-
existing theorems but in proving extremely surprising new results on multiplicative functions
themselves.

In this course we will try to cover the following topics from the modern theory of multi-
plicative functions (in greater or lesser detail, depending on time constraints):

• Long averages: pretentious multiplicative functions and Halász’s theorem;

• Application to Dirichlet characters: Granville–Soundararajan’s improvement on the
Pólya–Vinogradov inequality;

• Short averages: the Matomäki–Radziwi l l theorem;

• Correlations: Tao’s proof of the logarithmically-averaged Chowla conjecture.

Prerequisites
I will assume familiarity with basic undergraduate real and complex analysis, including a
little harmonic analysis (essentially just the Fourier inversion formula). It is not a pre-
requisite to have previously attended a first course in analytic number theory, but it will
certainly be helpful to have done so, not least for putting the results of this course into their
full context.

Examples Sheets
There will be two examples sheets for this course. Many of the questions on these sheets will
lead the student through the proofs of various ‘standard’ estimates from analytic number
theory, to save us from having to discuss them in detail in the lectures themselves. There
will also be some problem material built around further uses and properties of multiplica-
tive functions. Some exercises embedded in the text will also appear on the examples sheets.
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1. Lecture 1: Examples and Motivation

This course has been designed to cater for two rather different audiences. I suspect
that about half of those watching will already have a strong grounding in classical analytic
number theory; for this audience, only the most novel material – and any insights into how
this material relates to the classical theory – will be of interest. However, I suspect that
the other half will comprise mathematicians who do not have such a strong background
in this particular field (some graduate students in combinatorics or probability, say); for
this audience, a more formal definition-theorem-proof style of course might be the more
appreciated.

I shall try to keep both audience entertained. But I ask for the forbearance of each: for
the forbearance of the experts, while I build up some basic material for the novices, and for
the forbearance of the novices, while I make some contextual remarks for the experts.

To begin, let me attempt to give a summary of every single proof in analytic number
theory, in four easy steps...

(1) Seek to estimate
∑

n6X f(n) for some function f : N −→ C.

(2) Show by means of some integral transform (Fourier transform, Mellin transform,
Perron’s formula etc.) that∑

n6X

f(n) ≈
∫
f̃(w,X)g(w,X) dx,

where f̃ is some transform of f , and where g depends on the type of transformation
used. (I am being deliberately imprecise about what sort of variable w is, and about
the range of integration.)

(3) Understand this integral extremely well, e.g. work out the regions where the inte-
grand is large, where it is small, where it is slowly varying, etcetera.

(4) Use this information to estimate the integral, and thereby to estimate the original
sum

∑
n6X f(n).

Easy! (Of course the real meat is in Step 3...).

Some classical gems follow the above schematic rather closely, e.g. estimating the number
of primes p1, p2, p3 for which p1 + p2 + p3 = N .

(1) Seek to estimate
∑

p1,p2,p36N
f(p1, p2, p3), where

f(p1, p2, p3) =

{
1 if p1 + p2 + p3+ = N

0 otherwise.

(2) By Fourier inversion one ends up with

∑
p1,p2,p36N

f(p1, p2, p3) =

1∫
0

(∑
p6N

e2πiαp
)3

e−2πiαN dα.

(3) One proves that |
∑

p6N e
2πiαp| is large if α ≈ a/q for a rational number a/q with q

small, and that |
∑

p6N e
2πiαp| is small otherwise.
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(4) One adds up the contributions to the integral from α ≈ a/q, proving an asymptotic
formula.

But how well does the rubric apply to that triumph of 19th century mathematics, the
Prime Number Theorem (henceforth written PNT)?

Theorem 1.1 (PNT, Hadamard–de la Vallée Poussin, 1896).∑
p6X

1 = (1 + o(1))
X

logX

as X →∞.

The proof was completed independently by Hadamard and de la Vallée Poussin, but builds
on work and ideas of Euler, Gauss, Dirichlet, Riemann, Stieltjes, Jensen, Cahen, von Man-
goldt, etc.. In its modern formulation, the standard proof proceeds via the following steps:

(1) Seek to estimate
∑

p6X 1.

(2) By Perron’s formula/Mellin inversion one ends up with

(logX)
∑
p6X

1 ≈ 1

2πi

1+ 1
logX

+iT∫
1+ 1

logX
−iT

(
− ζ ′(s)

ζ(s)

)Xs

s
ds,

where ζ : C −→ C∪{∞} is the Riemann zeta function (meromorphic, a single simple
pole at s = 1) and T is some threshold. Here we have a contour integral along the
line <s = 1 + 1/ logX.

(3) Shift the contour using Cauchy’s Theorem to the line <s = 1− c√
logX

for some small

c > 0, and show thereby that

1

2πi

1+ 1
logX

+iT∫
1+ 1

logX
−iT

(
− ζ ′(s)

ζ(s)

)Xs

s
ds ≈ X Ress=1

(
− ζ ′(s)

ζ(s)

)
+

1

2πi

1− c√
logX

+iT∫
1− c√

logX
−iT

(
− ζ ′(s)

ζ(s)

)Xs

s
ds.

One shows that this second integral is small by showing that the integrand is small

(by such observations as |Xs| = X<s = X
1− c√

logX = o(X)).

(4) Show that Ress=1

(
− ζ′(s)

ζ(s)

)
= 1.

But isn’t Step 3 cheating?! We haven’t really ‘understood’ the initial integral in the
traditional sense, i.e. finding where the integrand is large, where it is small, where it is
slowly varying. Rather, we have used the magic of Cauchy’s Theorem to show that the
initial integral is related to a different integral that we can understand much more easily.

To show that the Cauchy step works one needs to know that there are no more poles of
−ζ ′(s)/ζ(s) in the region of interest, and this means understanding something about the
zeros of ζ(s). This is of course highly non-trivial! However, all of the methods we currently
have for doing this involve understanding certain things about ζ(s) where <(s) > 1 and then
converting this understanding into certain (rather weak) information about the zeros. So
why not cut out the middle-man (i.e. the zeros) and just focus on properly understanding
the original integrand?
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Now, to business...

Definition 1.2 (Multiplicative functions). We say that a function f : N −→ C satisfying
f(1) = 1 is:

• multiplicative if f(mn) = f(m)f(n) for all m,n ∈ N for which gcd(m,n) = 1;

• completely multiplicative if f(mn) = f(m)f(n) for all m,n ∈ N.

At first reading, a natural question arises: the second of these notions seems to be the more
natural of the two (indeed, f is completely multiplicative if and only if it is a homomorphism
of monoids f : (N,×) −→ (C,×)), so why don’t we call those functions ‘multiplicative’?
This is a good question. For now, we hope the reader will be satisfied with the short and
standard answer: that is, it turns out that multiplicative functions form a richer class of
objects than completely multiplicative functions, with better closure properties, and many
of the functions that occur naturally (and historically) in number theory are multiplicative
but not completely multiplicative.

Examples: (CM) = completely multiplicative, pi is always prime.

(1) n 7→ δ(n), where δ(n) :=

{
1 if n = 1

0 otherwise.
(CM).

(2) n 7→ 1. (CM).

(3) n 7→ nα, where α ∈ C is fixed. (CM).

(4) n 7→

{
1 if n = mk for some m ∈ N
0 otherwise,

where k ∈ N is fixed.

(5) n 7→ µ(n), where µ : N −→ {−1, 0,+1} is the Möbius function defined by µ(1) = 1
and

µ(n) =


0 if p2|n for some prime p

−1 if n = p1 . . . pk with pi distinct and k odd

1 if n = p1 . . . pk with pi distinct and k even.

(6) n 7→ λ(n), where λ : N −→ {−1, 1} is the Liouville function defined by λ(1) = 1 and

λ(n) :=

{
−1 if n = p1 . . . pk with k odd

1 if n = p1 . . . pk with k even.
(CM).

(7) n 7→ ϕ(n), where ϕ(n) is the Euler ϕ function defined by

ϕ(n) = |{m 6 n : gcd(m,n) = 1}|.

(8) n 7→ τ(n), where the divisor function τ is defined by

τ(n) = |{d 6 n : d|n}|

(9) More generally, n 7→ τk(n), where

τk(n) = |{d1, . . . , dk 6 n : d1d2 . . . dk = n}|.

(10) n 7→ σα(n), where for α ∈ C we define σα(n) =
∑
d|n
dα.
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(11) n 7→ χ(n), where χ : N −→ C is a Dirichlet character. We’ll be covering Dirichlet
characters in detail later in the course, but in case you don’t already know, a Dirichlet
character (with modulus q), is a group homomorphism χ : (Z/qZ)× −→ C, which is
then extended to a function on Z by defining:
• χ(n) = 0 if gcd(n, q) > 1;
• χ(n+ q) = χ(n) for all n ∈ Z.

The Legendre symbol (n
p
) is one such Dirichlet character, with modulus p. (CM).

(12) n 7→ 1
4
|{(x, y) ∈ Z2 : x2 + y2 = n}|.

(13) n 7→ sy(n), where

sy(n) =

{
1 if p|n⇒ p 6 y

0 otherwise.
(CM)

is the indicator function of the y-friable numbers (also called the y-smooth numbers).

(14) n 7→ a(n), where a(n) is the nth Fourier coefficient of a normalised Hecke cusp eigen-
form, e.g. when a(n) is the coefficient of qn in the expansion of the Ramanujan
∆-function ∆(q) = q

∏∞
n=1(1− qn)24.

(15) n 7→ f(n), where, having chosen f(1) = 1 and arbitrary complex numbers f(pk) for
all prime p and k ∈ N, we define f(n) = f(pk11 ) . . . f(pkmm ), when n = pk11 . . . pkmm .

Exercise 1.3. Prove that all of the above examples, save for (12) and (14), are multiplicative
(resp. completely multiplicative) as appropriate.

Exercise 1.4. (†). Prove that examples (12) and (14) are multiplicative.

We let

M := {f : f is multiplicative}
M0 := {f ∈M : |f(n)| 6 1 for all n}
Mk := {f ∈M : |f(n)| 6 τk(n) for all n}.

One can think of these classes of functions in terms of the sizes of f(p), i.e. f ∈ Mk

implies |f(p)| 6 k for all primes p. Arguments that apply to functions inM0 can usually be
adapated to functions inMk with enough effort, but for simplicity we will almost exclusively
work with M0 in this course.

In the coming lectures we will put a metric structure onM0, from which many rich prop-
erties will emerge.

New from old

• if f ∈M then |f | ∈ M.

• if f ∈M and f is real-valued then sgn(f) ∈M.

• if f, g ∈ M (resp. completely multiplicative), then fg ∈ M (resp. completely mul-
tiplicative).

• A particularly important construction in analytic number theory is the Dirichlet
convolution of two functions f, g : N −→ C, denoted by f ? g : N −→ C and defined
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to be

(f ? g)(n) =
∑
d|n

f(d)g
(n
d

)
=
∑
ab=n

f(a)g(b).

Dirichlet convolution is often a way of creating a seemingly more complicated func-
tion out of simpler functions, or of decomposing a given functions into simpler com-
ponents. For example, τ = 1 ? 1.

The operator ? interacts particularly well with multiplicative functions (see Exer-
cises below).

Exercise 1.5.

(a) Let f, g : N −→ C. If f, g ∈ M, show that f ? g ∈ M too. Show that this statement is
false if we replace ‘multiplicative’ by ‘completely multiplicative’ throughout.

(b) Show that 1 ? µ = δ.
(c) Show that CN can be given the structure of a commutative unital ring, with addition

given by pointwise +, multiplication given by ?, and multiplicative identity δ. Show
that M is contained within the multiplicative group of units.

Exercise 1.6 (Some Dirichlet convolution identities).

(a) Show that ϕ = µ ? id, where id(n) := n for all n.
(b) Show that µ ? 1� = λ, where 1� is the indicator function of the squares.
(c) Show that τ 3 ? 1 = (τ ? 1)2.

Generating functions
Let f : N −→ C be a function. We can associate a Dirichlet series F (s) to f by writing the
formal sum

F (s) :=
∑
n61

f(n)

ns

for s ∈ C. If f ∈M this sum may be factorised (formally) as an Euler product

F (s) =
∏
p

(
1 +

f(p)

ps
+
f(p2)

p2s
+
f(p3)

p3s
+ · · ·

)
.

This is just the fundamental theorem of arithmetic in a different guise.
The following facts are sometimes established in a first analytic number theory course.

Theorem 1.7 (Convergence of Dirichlet series). Let F (s) =
∑

n>1 f(n)/ns be a Dirichlet
series. If F (s0) converges (resp. absolutely converges) for some complex number s0 = σ0+it0
then F (s) converges (resp. absolutely converges) uniformly in compact subsets of the half-
plane σ > σ0. In particular, F (s) defines a holomorphic function there.

From this theorem we see that there is an abscissa of convergence

σc = σc(F ) := inf{σ ∈ R : ∃t ∈ R such that F (σ + it) converges}

and an abscissa of absolute convergence

σa = σa(F ) := inf{σ ∈ R : F (σ) converges absolutely},

and F (s) is holomorphic in the region <(s) > σc.

Exercise 1.8. Prove that σc 6 σa 6 σc+1. Also, show that σc <∞ iff there is some θ ∈ R
for which f(n) = O(nθ) for all n ∈ N.
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Theorem 1.9 (Euler products). Let f be a multiplicative function and s ∈ C. Then the
series

∑
n>1 f(n)/ns converges absolutely if and only if the double series

∑
p

∑
k>1 f(pk)/pks

converges absolutely. When they both converges absolutely, we have
∞∑
n=1

f(n)

ns
=
∏
p

(
1 +

f(p)

ps
+
f(p2)

p2s
+ · · ·

)
.

Note that this theorem is only true in the domain of absolute convergence, as can be seen
by considering the Dirichlet series

∑
n61(−1)n−1/ns (for which σc = 0, but σa = 1 and the

Euler product formula only holds when <s > 1).

Dirichlet series interact well with Dirichlet convolution.

Theorem 1.10 (Dirichlet convolution and Dirichlet series). If f, g, h : N −→ C with Dirich-
let series F (s), G(s), H(s) respectiviely and abscissas of absolute convergence
σa(F ), σa(G), σa(H), then

h = f ? g if and only if H(s) = F (s)G(s) for all <s > max(σa(F ), σa(G))

and σa(H) 6 max(σa(F ), σa(G)).

Very few schoolchildren dream of growing up to discover more properties of multiplica-
tive functions. But at least some schoolchildren do dream of growing up to discover more
properties about the primes. It turns out, fortunately, that these are not entirely unrelated
endeavours.

Proposition 1.11 (Equivalent formulation of PNT, Landau 1906). The following are ele-
mentarily equivalent:

(1) PNT;
(2) 1

X

∑
n6X

µ(n) = o(1) as X →∞;

(3) 1
X

∑
n6X

λ(n) = o(1) as X →∞.

This proposition recasts PNT as a pseudorandomness principle for the Liouville function
and the Möbius function, namely that integers are just as likely to have an even number of
prime factors as they are to have an odd number of prime factors.

We’ll give the proof of Proposition 1.11 in the next lecture. For now, let us chart the
parallel history of prime numbers and of mutliplicative functions. To do this properly,
we should quickly introduce another object from classical analytic number theory, the von
Mangoldt function Λ(n), which is a function supported on prime powers and defined by

Λ(n) =

{
log p if n = pk

0 otherwise.

This is not a multiplicative function. But it does enjoy good properties with respect to
Dirichlet convolution, which it why it earns its central role in the story.

Exercise 1.12. Prove the following identities:

• 1 ? Λ = log;
• Λ = µ ? log;
• Λ = −(1 ? µ log)

There is a Dirichlet series explanation for these identities of course, namely that∑
n>1

Λ(n)

ns
= −ζ

′(s)

ζ(s)
when <s > 1,
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where ζ(s) =
∑

n>1 1/ns is the Riemann zeta function.

Proposition 1.13 (Log-weights). The following are elementarily equivalent:

(1) PNT;
(2)

∑
n6X

Λ(n) = (1 + o(1))X as X →∞.

Proof. Observe first of all that∑
n6X

Λ(n) =
∑

k6logX/ log 2

∑
p6X1/k

log p =
∑
p6X

log p+O(X1/2 log2X).

So (2) is equivalent to the asymptotic
∑

p6X log p = (1 + o(1))X as X →∞.
Furthermore, for all ε > 0 we have∑

p6X

1 >
1

logX

∑
p6X

log p > (1− ε)
∑

X1−ε<p6X

1 > (1− ε)
∑
p6X

1−O(X1−ε).

(1) ⇒ (2): From the above inequality and PNT we have

X

logX
(1 + o(1)) >

1

logX

∑
p6X

log p > (1− ε) X

logX
−O(X1−ε),

so

1 + o(1) >
1

X

∑
p6X

log p > 1− ε−O(X−ε logX).

If X is large enough in terms of ε we have

1 + 2ε >
1

X

∑
p6X

log p > 1− 2ε.

Since ε was arbitrary, we conclude that 1
X

∑
p6X log p ∼ 1 as required.

(2) ⇒ (1): A very similar argument. �

Returning to our main theme, let us compare the known results on prime numbers and
on the Möbius function.

Prime Number Theorem
1896

Hadamard, de la Vallée Poussin
1
X

∑
n6X

Λ(n) = 1 + o(1) as X →∞

Möbius cancellation
1897

von Mangoldt
1
X

∑
n6X

µ(n) = o(1) as X →∞

Assuming the Riemann Hypothesis (RH), one also gets similar estimates.

Prime Number Theorem on RH
1885

Stieltjes
1
X

∑
n6X

Λ(n) = 1 +Oε(X
− 1

2
+ε) for all ε > 0.

Möbius cancellation on RH
1912

Littlewood
1
X

∑
n6X

µ(n) = Oε(X
− 1

2
+ε) for all ε > 0.

In shorter intervals, there used to also be a close relationship between the best known
results in each case.
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Prime in short intervals
1972

Huxley
1
Xθ

∑
X<n6X+Xθ

Λ(n) = 1 + oθ(1) as X → ∞,

provided θ > 7/12.

Möbius cancellation in short intervals
1976

Ramachandra
1
Xθ

∑
X<n6X+Xθ

µ(n) = oθ(1) as X → ∞, pro-

vided θ > 7/12.
NB: Heath-Brown slightly improved both of these results in 1988.

The best known results in ‘almost all’ short intervals also used to be comparable.

Primes in almost all short intervals on
RH
1943

Selberg

For all ε > 0, if h > log2+εX then
2X∫
X

∣∣∣ ∑
x<n6x+h

Λ(n)− h
∣∣∣2 dx = oε(Xh

2)

as X →∞.

Möbius cancellation in almost all
short intervals on RH

2008-ish
Gao

There exists A > 0 such that if h > logAX

then
2X∫
X

∣∣∣ ∑
x<n6x+h

µ(n)
∣∣∣2 dx = oε(Xh

2)

as X →∞.

There is even a comparison between some of the conjectures.

Twin prime conjecture asymptotic∑
n6X

Λ(n)Λ(n+2) ∼ CX as X →∞, for some

explicit constant C.

Chowla conjecture
1
X

∑
n6X

µ(n)µ(n+ 1)→ 0 as X →∞.

But the world is now irrevocably altered! By finding new ways of directly studying the
relevant Dirichlet series, without having to proceed via the zeros of ζ(s), our understanding
of multiplicative functions has pulled ahead of our understanding of the primes.

Theorem 1.14 (Matomäki–Radziwi l l, 2014). If h = h(X)→∞ as X →∞, then

2X∫
X

∣∣∣ ∑
x<n6x+h

µ(n)
∣∣∣2 dx = o(Xh2).

This is a stunning result, and surprised everyone when it was released. We will prove a
(slightly weaker) form of this theorem towards the end of this course.

Theorem 1.15 (Matomäk–Teräväinen, 2019). If θ > 11/20 then

1

Xθ

∑
X<n6X+Xθ

µ(n) = oθ(1).

Note that 11/20 = 0.55 < 0.5833... = 7/12, so this result is an improvement over the bound
of Ramachandra from earlier. People outside the field might struggle to get quite so excited
about this result – although it is exciting! – so we won’t discuss it further in this course.

Theorem 1.16 (Tao, 2015).

1

logX

∑
n6X

µ(n)µ(n+ 1)

n
= o(1)

as X →∞.
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This is Tao’s ‘logarithmically averaged Chowla conjecture’ (note that the trivial bound
for the left-hand side is 1). The proof uses pretty much everything that we will cover in this
course, and a lot more besides; proving it will be the climax of this course.
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2. Lecture 2: Mean values and 1-pretentious functions

From last lecture, we owe the reader a proof of Proposition 1.11, which gave some ele-
mentary equivalences of the primes number theorem.

Proof of Proposition 1.11. (2) ⇒ (1): From Proposition 1.13, it suffices to show that∑
n6X

(Λ− 1)(n) = o(X).

We proceed to write the left-hand side as a Dirichlet convolution of functions involving µ.
Indeed

Λ = µ ? log

1 = µ ? 1 ? 1 = µ ? τ,

so

Λ− 1 = µ ? (−τ + log).

One may prove (see Example Sheet 1), that

1

B

∑
b6B

(−τ + log)(b) = −2γ +O
( 1√

B

)
,

where γ = 0.5772156649... is the Euler–Mascheroni constant. In particular

1

B

∑
b6B

(−τ + 2γ + log)(b) = O
( 1√

B

)
.

In general it is always more convenient to work with fucntions that have asymptotic mean
value 0 than otherwise, and so this motivates our writing

Λ− 1 = µ ? (−τ + log)

= µ ? (−τ + 2γ + log) + µ ? 2γ

= µ ? (−τ + 2γ + log) + 2γδ.

For each of writing we define f := −τ + 2γ + log. Then∑
n6X

(Λ− 1)(n) = O(1) +
∑
ab6X

µ(a)f(b)

= O(1) +
∑

ab6X:b6Y

µ(a)f(b) +
∑

ab6X:b>Y

µ(a)f(b)

:= O(1) + Σ6Y + Σ>
Y ,

where Y > 1 is a parameter to be chosen. We have

Σ6Y =
∑
b6Y

f(b)
∑
a6X/b

µ(a) 6
∑
b6Y

|f(b)|o
(X
b

)
= oY (X).

Furthermore

Σ>
Y =

∑
a6X/Y

µ(a)
∑

Y <b6X/a

f(b) 6
∑

a6X/Y

O
(√X

a

)
= O

( X√
Y

)
.

If Y = Y (X)→∞ sufficiently slowly, we deduce that Σ6Y + Σ>
Y = o(X) as required.

The technique of splitting the divisors by a parameter Y is called the ‘Dirichlet hyperbola
method’, and it is a ubiquitous idea in the field.
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(1) ⇒ (2): Since

Λ(n) =
∑
d|n

µ(d) log(n/d) = (log n)
∑
d|n

µ(d)−
∑
d|n

µ(d) log d = −
∑
d|n

µ(d) log d

we have the identity
Λ = −(1 ? µ log).

So
µ ? (Λ− 1) = −µ log−δ.

This identity is useful because it can be used to relate sums of the function Λ− 1 to sums
of the Möbius function. Adding µ(n) logX to both sides, summing over n, and rearranging,
we get ∑

n6X

µ(n) = − 1

logX

∑
n6X

(µ ? (Λ− 1))(n) +
1

logX

∑
n6X

µ(n) log
(X
n

)
− 1

logX
. (1)

So it suffices to control the sums on the right-hand side.
By the triangle inequality,∣∣∣ 1

logX

∑
n6X

µ(n) log
(X
n

)∣∣∣ 6 1

logX

∑
n6X

∣∣∣ log
(X
n

)∣∣∣ = O
( X

logX

)
,

see Examples Sheet 1. Furthermore,∣∣∣ 1

logX

∑
n6X

(µ ? (Λ− 1))(n)
∣∣∣ 6 1

logX

∑
d6X

∣∣∣ ∑
n6X/d

(Λ− 1)(n)
∣∣∣ =

1

logX

∑
d6X

g
(X
d

)
for some function g for which g(x) = o(x), by PNT. This means that

1

logX

∑
d6X

g
(X
d

)
= o(X),

(see Examples Sheet 1). Therefore, from (1), we derive∑
n6X

µ(n) = o(X),

which is (2).
The equivalence of (2)⇔ (3) is on Examples Sheet 1 (Hint: use the relation µ?1� = λ). �

Later on in this lecture we will need to make use of two elementary estimates.

Theorem 2.1 (Chebyschev). For all X > 2 one has

X �
∑
n6X

Λ(n)� X,

(and this may be proved in a simple elementary way).

Theorem 2.2 (Mertens). For all X > 2 one has∏
p6X

(
1− 1

p

)
= (1 + o(1))

e−γ

logX
,

∑
p6X

1

p
= log logX +O(1),

and ∑
p6X

log p

p
= logX +O(1),
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where γ is the Euler–Mascheroni constant (and these may be proved in a simple elementary
way).

A few exercise on Examples Sheet 1 will lead you through proofs of these statements.

Proposition 1.11 related PNT to a computation of the asymptotic mean values of µ and λ.
For the rest of this lecture (and for several following), we will investigate these mean values
more systematically. The culmination of our efforts will be Halász’s theorem, which provides
a sharp characterisation of those multiplicative functions that have asymptotic mean value
0 (and will, amongst other things, imply the prime number theorem).

If f : N −→ C is a function we will define

MX(f) :=
1

X

∑
n6X

f(n)

and

MX,log(f) :=
1

logX

∑
n6X

f(n)

n
.

Let us start with a simple, but nonetheless instructive, example.

Lemma 2.3 (Density of squarefrees).

MX(µ2) =
6

π2
+O(X−1/2).

This main term, though seemingly exotic, is not really so surprising. Indeed, a number n
is squarefree iff p2 - n for all primes p. The proportion of numbers n for which p2 - n is
(1− 1/p2), so, assuming independence, the proportion of numbers n for which p2 - n for all
primes p is ∏

p

(
1− 1

p2

)
,

which is ∏
p

(
1 +

1

p2
+

1

p4
+

1

p6
+ · · ·

)−1

=
(∑
n>1

1

n2

)−1

=
6

π2

by a standard limit. Here is a rigorous proof:

Proof. Write µ2 = 1 ? g, where g = µ2 ? µ, i.e.

g(n) =

{
µ(m) if n = m2

0 otherwise.

So ∑
n6X

µ2(n) =
∑
d6X

g(d)
∑
e6X/d

1 = X
∑
d6X

g(d)

d
+O(

∑
d6X

|g(d)|).

Since |g| 6 1�, the error term is O(X1/2). Now∑
d6X

g(d)

d
=
∑

d6X1/2

µ(d)

d2
=
∑
d>1

µ(d)

d2
+O(X−1/2) =

∏
p

(
1− 1

p2

)
+O(X−1/2) =

6

π2
+O(X−1/2)

as above. �

Not all multiplicative functions have a well-defined asymptotic mean value. To show this,
it will be useful for us to introduce an extremely widely-applicable estimation device known
as ‘partial summation’.
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Lemma 2.4 (Partial summation). Let F ∈ C1([a1, a2]) and let f : N −→ C be a function.
Then ∑

a1<n<a2

F (n)f(n) = F (a2)
∑

a1<n<a2

f(n)−
a2∫
a1

F ′(t)
∑

a1<n<t

f(n) dt.

Proof. One has
a2∫
a1

F ′(t)
∑

a1<n<t

f(n) dt =

a2∫
a1

F ′(t)
∑

a1<n<a2

f(n)1n<t dt

=
∑

a1<n<a2

f(n)

a2∫
n

F ′(t) dt

=
∑

a1<n<a2

f(n)(F (a2)− F (n)),

and then the lemma follows by rearranging. �

Lemma 2.5 (No asymptotic mean value). If t ∈ R and X > 2, then

MX(n 7→ nit) =
X it

1 + it
+O(X−1(1 + |t| logX)).

Proof. The result is trivial for t = 0, so we may assume that t 6= 0. Therefore, by partial
summation,

∑
n6X

nit = X1+it − it
X∫

1

yit−1
∑
n6y

1 dy = X1+it − it
X∫

1

yitdy +O(|t| logX)

=
X1+it

1 + it
+O

( |t|
|1 + it|

+ |t| logX
)

=
X1+it

1 + it
+O(1 + |t| logX)

as claimed. �

In this case we see that

lim
X→∞

|MX(n 7→ nit)| = 1

|1 + it|
,

so in particular is well-defined. But the argument of MX(n 7→ nit) changes with X, so there
is no asymptotic mean value. (From now on, for notational ease, we will also use nit to refer
to the function n 7→ nit.

Here are the following broad questions that we will go some way to addressing:

(1) What is a good guess for MX(f) and for MX,log(f)?

(2) Under what conditions does this guess provably hold?

(3) When does MX(f)→ 0 as X →∞?

Let us first consider how MX(f) and MX,log(f) are related.

Lemma 2.6. Let f : N −→ C and suppose that limX→∞MX(f) = Cf for some constant
Cf . Then limX→∞MX,log(f) = Cf as well.
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Proof. This is just summation by parts. Indeed

MX,log(f) =
1

logX

∑
n6X

f(n)

n

=
1

logX
MX(f) +

1

logX

X∫
1

tMt(f)

t2
dt

= Of (1/ logX) +
Cf

logX

X∫
1

1

t
dt+

1

logX

X∫
1

ot→∞,f (1)

t
dt

= Cf + oX→∞,f (1)

as required. (See Examples Sheet for the final estimation step). �

So proving an asymptotic formula for MX,log(f) is strictly easier than proving an asymptotic
formula for MX(f).

If g ∈M is real-valued and g(n) > 0 for all n, we could use Rankin’s trick to upper-bound
MX(g) by MX,log(g). Indeed

MX(g) =
1

X

∑
n6X

g(n) 6
1

X

∑
n6X

g(n)
X

n
6 (logX)MX,log(g).

However, by using the multiplicativity of g it turns out that one can greatly improve this
bound.

Lemma 2.7. Let g ∈Mk and suppose that g is real-valued and g(n) > 0 for all n. Then

MX(g)�k MX,log(g).

Proof when g is completely multiplicative and g ∈M0. Since 1 ? Λ = log we have∑
n6X

g(n) log n =
∑
ab6X

g(ab)Λ(b) 6
∑
a6X

g(a)
∑
b6X/a

Λ(b)� X
∑
a6X

g(a)

a
,

using Chebyschev’s elementary bound
∑

n6Y Λ(n)� Y . This yields

logX
∑
n6X

g(n) =
∑
n6X

g(n) log n+
∑
n6X

g(n) log
X

n
� X

∑
a6X

g(a)

a

as log X
n
6 X

n
, which is the lemma. �

One notes that the proof actually works for all positive sub-multiplicative functions, i.e. for
which g(ab) 6 g(a)g(b). For example, the Euler ϕ function.

Proof for g ∈Mk. This is only moderately more complicated. The central idea is the same.
Since g(p) 6 k, one has∑

n6X

g(n) log n =
∑
n6X

g(n)
∑
pr‖n

log(pr)

=
∑
p6X

g(p) log p
∑
n6X/p
(n,p)=1

g(n) +
∑
r>2

∑
p6X1/r

g(pr) log(pr)
∑

n6X/pr

(n,p)=1

g(n)

6
∑
p6X

g(p) log p
∑
n6X/p

g(n) +
∑
r>2

∑
p6X1/r

g(pr) log(pr)
∑

n6X/pr

g(n)
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The first term may be estimated as above, giving a bound

6
∑
n6X

g(n)
∑
p6X/n

g(p) log p� kX
∑
n6X

g(n)

n
.

The second term, bounding trivially, gives

6 X
∑
r>2

∑
p6X1/r

τk(p
r) log(pr)

pr

∑
n6X/pr

g(n)

n
6 X

∑
n6X

g(n)

n

(∑
p

∑
r>2

τk(p
r) log(pr)

pr

)
�k X

∑
n6X

g(n)

n

as well. So ∑
n6X

g(n) log n�k X
∑
n6X

g(n)

n
,

and then we may complete the proof as before. �

NB: By considering this proof, one may see the justification for why another class of mul-
tiplicative functions that was often considered, historically, was those positive h ∈ M for
which there existed constant p1 > 0 and 0 < p2 < 2 for which h(pm) 6 p1p

m
2 .

Next, let us consider what might be a good guess for MX(f), by trying to generalise the
argument that we used for µ2.

Observe how, with µ2, we were able to write µ2 = 1? g where
∑

n6X |g(n)| was small, and
this enabled us to compute the mean value. Proceeding in general then, writing f = 1 ? g
we would get

XMX(f) =
∑
d6X

g(d)
∑
e6X/d

1 = X
∑
d6X

g(d)

d
+O(

∑
n6X

|g(d)|).

Hoping (!) that the error is small, we have a main term of

X
∑
d6X

g(d)

d
≈ X

∏
p6X

∑
m>0

g(pm)

pm
= X

∏
p6X

(
1− 1

p

)(
1 +

f(p)

p
+
f(p2)

p2
+ · · ·

)
:= XP(f ;X).

So that’s a first guess, and it works for f = µ2. The following is a generalisation, that we
will spend the rest of the lecture proving.

The next theorem is just a formalised version of the above observations.

Theorem 2.8 (Wintner). Let f ∈M0 be real-valued and suppose that∑
p

1− f(p)

p
<∞. (2)

Then

MX(f) = P(f) + of (1),

where

P(f) := lim
X→∞

P(f ;X)

is well-defined, and is only equal to zero if f(2i) = −1 for all i > 1.
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We will call such f ∈M0 for which (2) holds strongly 1-pretentious, in the sense that the
function f ‘pretends’ to be the constant function 1 on primes. Observe that µ2 is strongly
1-pretentious, so Wintner’s theorem immediately implies MX(µ2) = 6

π2 + o(1) as in Lemma
2.3.

Before proceeding to the proof, we need one auxiliary result.

Exercise 2.9. Show that if (an) is a sequence of complex numbers with an 6= −1 for all
n, then

∏
n>1(1 + an) converges absolutely, to a non-zero limit, if and onlf if

∑
n>1 |an|

converges.

Proof. Writing f = 1 ? g we have

MX(f) =
1

X

∑
d6X

g(d)
∑
e6X/d

1 =
∑
d6X

g(d)

d
+O(MX(|g|)). (3)

Since |g| ∈ M2 we have

MX(|g|)�MX,log(|g|)� 1

logX

∑
n:sX(n)=1

|g(n)|
n
� 1

logX

∏
p6X

(
1 +
|g(p)|
p

+
∑
m>2

|g(pm)|
pm

)
.

Observe that |g(p)| = |(µ? f)(p)| = |1− f(p)| = 1− f(p) since f ∈M0 is real-valued. Since∑
p |g(p)|/p <∞ by assumption, and∑

p

∑
m>2

|g(pm)|
pm

<∞

since g ∈M2, we have that ∏
p6X

(
1 +
|g(p)|
p

+
∑
m>2

|g(pm)|
pm

)
converges, and therefore the error term in (3) is O((logX)−1).

This same analysis shows that
∑
d>1

g(d)
d

converges absolutely, and therefore

∑
d>X

g(d)

d
= o(1).

Hence, following on from (3), we have

MX(f) =
∑
d>1

g(d)

d
+ o(1) =

∏
p

∑
m>0

g(pm)

pm
+ o(1) =

∏
p

(
1− 1

p

)(∑
m>0

f(pm)

pm

)
+ o(1),

since g = µ ? f , where the Euler product converges absolutely.
So limX→∞P(f ;X) = P(f), and moreover P(f) = 0 if and only if∑

m>0

f(pm)

pm
= 0

for some prime p. However, note that∑
m>0

f(pm)

pm
= 1 +

∑
m>1

f(pm)

pm
> 1−

∑
m>1

1

pm
= 1− 1

p− 1
> 0,

with equality if and only if p = 2 and f(2m) = −1 for allm > 1. This settles the theorem. �
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NB: Note that the multiplicative function f(n) = (−1)n−1 has zero mean value because
of this theorem.

Delange generalised this result to all f ∈M0.

Next, we shall consider positive multiplicative functions again and prove a result in the
opposite direction.

Theorem 2.10. Let g ∈Mk and assume that g is real-valued and g(n) > 0 for all n. Then

MX(g)�k exp
(
−
∑
p6X

1− g(p)

p

)
.

Therefore, if g ∈M0 too and ∑
p

1− g(p)

p
=∞

then MX(g) = o(1).

Proof. We know from Lemma 2.7 that MX(g)�k MX,log(g). So

MX,log(g) =
1

logX

∑
n6X

g(n)

n
�
∏
p6X

(
1− 1

p

)(
1 +

g(p)

p
+
∑
m>2

g(pm)

pm

)
by Merten’s theorem. Now(

1− 1

p

)(
1 +

g(p)

p
+
∑
m>2

g(pm)

pm

)
= 1− 1− g(p)

p
+Ok(p

−3/2),

so from the Taylor series of log(1− x) we get

log(MX,log(g)) = Ok(1)−
∑
p6X

1− g(p)

p
.

Thus

MX,log(g)�k exp
(
−
∑
p6X

1− g(p)

p

)
.

This gives the theorem. �

In summary then, if 0 6 g(n) 6 1 for all n then we have a satisfactory theory for
calculating the asymptotics of MX(g), involving the convergence or otherwise of∑

p(1− g(p))/p.
Wirsing generalised this result to all real valued f ∈M0.

Theorem 2.11 (Wirsing). Let f ∈M0 be real-valued. If∑
p

1− f(p)

p
=∞

then MX(f) = o(1).

This theorem is clearly much deeper than anything we have done in this lecture, as by
putting f = µ one immediately deduces PNT. Unsuprisingly, then, Wirsing uses PNT at a
critical point in his proof.

However, we do already have the tools to prove the same theorem for logarithmic averages
(and this result will be the one we will need later on when considering Dirichlet characters).
We may even work with complex valued functions.
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Lemma 2.12 (Logarithmic averages of non-pretentious functions). Let f ∈M0. Then

MX,log(f)� exp
(1

2

∑
p6X

1−<f(p)

p

)
.

Proof. Write f ? 1 = g, where g ∈M2. Then∑
n6X

g(n) =
∑
d6X

f(d)
∑

m6X/d

1 = X
∑
d6X

f(d)

d
+O(X).

Therefore

MX,log(f) =
1

logX
MX(g) +O

( 1

logX

)
6

1

logX
MX(|g|) +O

( 1

logX

)
.

By Lemma 2.7, we have

1

logX
MX(|g|)� 1

logX
MX,log(|g|) 6 1

log2X

∏
p6X

∞∑
m=0

|g(pm)|
pm

.

But this is equal to

1

log2X

∏
p6X

(
1 +
|f(p) + 1|

p
+O

( 1

p3/2

))
�
∏
p6X

(
1− 1

p

)2(
1 +
|f(p) + 1|

p

)
.

This is

�
∏
p6X

(
1− 2− |f(p) + 1|

p

)
� exp

(
−
∑
p6X

2− |f(p) + 1|
p

)
since 1− x 6 e−x for x > 0 (or use Taylor expansion of log(1− x)).

One has the inequalities

1

2
(1−<z) 6 2− |z + 1| 6 1−<z

for all |z| 6 1 (exercise), and so we have the final upper bound of

exp
(
− 1

2

∑
p6X

1−<f(p)

p

)
.

The O(1/ logX) error can also be absorbed into the implied constant, since∑
p6X

1
p
∼ log logX. �

For these real valued functions, one sees from this whole lecture that it is important to
know ‘how closely f pretends to be 1’ on the primes, in order to determine the nature of
MX(f). Next time, we will introduce a general way of describing and manipulating this
notion of ‘closeness’.

3. Lecture 3: Granville–Soundararajan distance

Just before we turn to the central notion of the lecture, and indeed the entire course –
Granville–Soundararajan distance – we feel that is important for us to introduce another
small concept.

The function Λf

Let f ∈Mk have Dirichlet series F (s) (which has abscissa of absolute convergence at least
1). Define the function Λf : N −→ C by

f ? Λf = f log,
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i.e. such that ∑
n>1

Λf (n)

ns
= −F

′(s)

F (s)
.

The function Λf (n) is a generalisation of the von Mangoldt function Λ(n) (which, in this
notation, is Λ1(n)).

Exercise 3.1.

• Show that Λf is supported on prime powers, and that Λ(p) = f(p) log p.
• Find an example of f ∈M2 for which Λf (n) grows exponentially in n.

The condition |Λf (n)| 6 κΛ(n) is another common one to see imposes on multiplicative
functions. One may prove Lemma 2.7 very easily, say, under this assumption. We will refer
to Λf at various points on the examples sheets.

For the rest of this lecture, we will be investigating the basic properties of the following
function.

Definition 3.2 (Granville–Soundararajan distance). Let f, g ∈ M0 and X > 2. We then
define the (Granville–Soundararajan) distance between f and g to be

D(f, g;X) :=
(∑
p6X

1−<(f(p)g(p))

p

) 1
2
.

We let D(f, g;∞) := limX→∞D(f, g;X).

Related objects, which will occasionally be more natural to consider, are

Dα(f, g) :=
(∑

p

1−<(f(p)g(p))

pα

)1/2

,

D∗(f, g;X) :=
(∑
k>1

∑
p6X1/k

1−<(f(pk)g(pk))

p

)1/2

,

and

D∗α(f, g) :=
(∑
k>1

∑
p

1−<(f(pk)g(pk))

pkα

)1/2

.

As we will presently show, all these quantities differ by at most O(1), so they may be thought
of as essentially the same notions.

Lemma 3.3 (Easy properties of G–S distance). Let f, g ∈M0. Then

• D(f, g;X) 6
√

2 log logX +O(1)
• D(f, g;X) = D(g, f ;X) = D(1, fg;X)
• when α = 1 + 1

logX
we have |D(f, g;X)− D∗α(f, g)| = O(1).

Proof. The first of these points is immediate from Mertens’ theorems, and the second is
immediate from the definition, so we turn to the third point. Note that∑

k>2

∑
p

1−<(f(pk)g(pk))

pk(1+1/ logX)
�
∑
p

∑
k>2

1

pk
�
∑
p

1

p2
� 1,

so it remains to show that |D(f, g;X) − Dα(f, g)| = O(1) when α = 1 + 1
logX

. Letting

ap := 1−<(f(p)g(p)), observe that both∑
p>X

ap
p1+1/ logX

�
∑
n>X

1

n1+1/ logX
� X−

1
logX � 1
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and ∑
p6X

ap

(1

p
− 1

p1+1/ logX

)
�
∑
p6X

p1/ logX − 1

p1+logX
�
∑
p6X

log p

p logX
� 1

by Mertens estimates. This settles the lemma. �

Armed with these bounds, let us introduce some vocabulary with which we can talk about
functions f, g ∈M0 and the distance D.

We will say that f is weakly g pretentious if D(f, g;X)2 = o(log logX), and that f is
(strongly) g pretentious if D(f, g;∞) <∞.

Lemma 3.4 (Relation to Dirichlet series). If f ∈ M0 and F (s) :=
∑

n>1 f(n)/ns, then if
X > 2 we have∣∣∣F(1 +

1

logX
+ it

)∣∣∣ � (logX)
∣∣∣∑
m>0

f(2m)

2m(1+1/ logX+it)

∣∣∣× exp(−D(f, nit;X)2).

The fact that one has to deal with the prime 2 separately is really just a technical an-
noyance. If f(2m) = 0 for m > 2 (if |f | = µ2, say), or if f(2m) = f(2)m (if f is completely
multiplicative, say) then we recover the more natural-looking relationship∣∣∣F(1 +

1

logX
+ it

)∣∣∣ � (logX) exp(−D(f, nit;X)2).

In any circumstances, we always have∣∣∣F(1 +
1

logX
+ it

)∣∣∣� (logX) exp(−D(f, nit;X)2).

Before proving the lemma, let us just review a couple of aspects of the theory of the
complex logarithm when applied to F (s). We know that F (s) is a holomorphic function
on the simply connected domain <s > 1. By the convergence of the Euler product there,
we know that F (s) = 0 if and only if 1 +

∑
k>1 f(pk)/pks = 0 for some prime p. But since

f ∈M0 we have (writing σ = <s)∣∣∣∑
k>1

f(pk)

pks

∣∣∣ 6∑
k>1

1

pkσ
=

1

pσ − 1
< 1

if σ > 1 and p > 2, so we conclude that F (s) 6= 0 for <s > 1.
This means that we can define the principal branch of the logarithm LogF (s) by, writing

s = σ + it,

LogF (s) =

∫
Γs

F ′(z)

F (z)
dz + logF (σ),

where Γs is a straight-line contour from σ to σ + it and log is the usual real logarithm.
Now, for any branch of the complex logarithm in general it is only the case that Log(z1z2) =

Log(z1) + Log(z2) modulo 2πi, since

Log z = log |z|+ i arg(z).

However, for us we have that LogF (s) and
∑

p Log(
∑

m>0 f(pm)/pms) are both holomorphic

functions on {<s > 1} that agree on the real axis and always differ by a multiple of 2πi. So

logF (s)−
∑
p

Log
(∑
m>0

f(pm)

pms

)
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is a continuous function from a connected set {<s > 1} into a discrete set 2πiZ, so it must
be constant (and is therefore identically 0). Hence

LogF (s) =
∑
p

Log
(∑
m>0

f(pm)

pms

)
.

Proof of Lemma 3.4. By the theory of the complex logarithm we have∣∣∣F(1 +
1

logX
+ it

)∣∣∣ = exp
(
<LogF

(
1 +

1

logX
+ it

))
.

Furthermore

LogF
(

1 +
1

logX
+ it

)
− Log

(∑
m>0

f(2m)

2m(1+ 1
logX

+it)

)
=
∑
p>3

Log
(

1 +
∑
m>1

f(pm)

pm(1+ 1
logX

+it)

)
=
∑
p>3

∑
m>1

f(pm)

pm(1+ 1
logX

+it)
+O(1)

by the Taylor expansion for Log(1 + x) when |x| < 1, since∑
p>3

∑
k>2

(−1)k−1

k

(∑
m>1

f(pm)

pm(1+ 1
logX

+it)

)k
6
∑
p>3

∑
k>2

1

(p− 1)k
6
∑
p>3

1

(p− 1)(p− 2)
= O(1).

Note how we had to remove the prime 2 from this calculation in order to end up with a
bounded quantity!

Continuing, we get

=
∑
p

∑
m>1

f(pm)p−itm

pm(1+ 1
logX

)
+O(1)

= log logX +
∑
p

∑
m>1

−1 + f(pm)p−itm

pm(1+ 1
logX

)
+O(1),

by the fact that ∑
p

1

p1+1/ logX
=
∑
p6X

1

p
+O(1) = log logX +O(1),

as in the proof of the preceding lemma. So

exp
(
<LogF

(
1 +

1

logX
+ it

)
−<Log

(∑
m>0

f(2m)

pm(1+ 1
logX

+it)

))
is

� logX exp
(∑
p>3

∑
m>1

−1 + f(pm)p−itm

pm(1+ 1
logX

)

)
� logX exp(−Dα(f, nit)2)

� logX exp(−D(f, nit;X)2)

by the previous lemma. This settles our claim. �

Now we come to the critical point, namely that D is a pseudometric onM0, i.e. it satisfies
a triangle inequality.

Lemma 3.5 (Triangle inequality). Let f, g, h ∈M0 and X > 2. Then

D(f, g;X) + D(g, h;X) > D(g, h;X).

In words, this says that ‘if f pretends to be g and g pretends to be h, then f pretends to
be h’.
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Proof. When |f(p)|, |g(p)|, |h(p)| = 1 for all primes p, the proof is easy. Indeed, in this case

1−<(f(p)g(p)) =
1

2
|f(p)− g(p)|2,

so the triangle inequality is simply the triangle inequality for the normed space `2(m),
where m is the atomic measure supported on primes p 6 X with m(p) = 1/2p for all p 6 X.
Concretely,

1

2

∑
p6X

|f(p)− h(p)|2

p

is equal to

1

2

∑
p6X

|f(p)− g(p)|2 + |g(p)− h(p)|2 + 2<(f(p)− g(p))(g(p)− h(p))

p

6
1

2

∑
p6X

|f(p)− g(p)|2 + |g(p)− h(p)|2 + 2|f(p)− g(p)||g(p)− h(p)|
p

6
1

2

∑
p6X

|f(p)− g(p)|2

p
+

1

2

∑
p6X

|g(p)− h(p)|2

p
+
(∑
p6X

|f(p)− g(p)|2

p

)1/2(∑
p6X

|g(p)− h(p)|2

p

)1/2

by Cauchy–Schwarz. This inequality is exactly

D(f, h;X)2 6 D(f, g;X)2 +D(g, h;X)2 +2D(f, g;X)D(g, h;X) = (D(f, g;X)+D(g, h;X))2,

as required.
Now, for general f, g, h ∈M0 one has the following drop-dead gorgeous proof due to Tao.

For every u ∈ C with |u| 6 1, there are points u1, u2 on the unit circle such that u is the
midpoint of the chord with endpoints u1, u2. (If u is on the unit circle, take u1 = u2). Then,
if |u|, |z| 6 1,

1

8

∑
i,j62

|ui − zj|2 =
1

4

∑
i,j62

(1−<(uizj)) = 1−<
(1

2
(u1 + u2),

1

2
(z1 + z2)

)
= 1−<uz.

Applying this with u = f(p), z = g(p), one may deduce the triangle inequality for D from
another `2 triangle inequality. �

Lemma 3.6 (Multiplication inequality). If f1, f2, g1, g2 ∈M0, then

D(f1, g1;X) + D(f2, g2;X) > D(f1f2; g1g2;X).

In words, this is saying ‘if f1 pretends to be g1, and f2 pretends to be g2, then f1f2

pretends to be g1g2’.

Proof. This follows from the triangle inequality, via

D(f1, g1;X) + D(f2, g2;X) = D(1, f1g1;X) + D(g2f1, 1;X) > D(f1g1, g2f2;X)

= D(f1f2, g1g2;X) = D(f1f2, g1g2;X).

�

Lemma 3.7 (Special case). If t ∈ R and X > 2 then

D(1, nit;X)2 >

{
log(1 + |t| logX)−O(1) when |t| 6 1

log logX − log log(|t|+ 2)−O(1) when |t| > 1.
.
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Proof. These bounds are a consequence of the elementary theory of the Riemann zeta func-
tion. Indeed, for any N ∈ N and s with <s > 1 one has the approximation

ζ(s) =
N∑
n=1

1

ns
+
N1−s

s− 1
− s

∞∫
N

{y}
ys+1

dy,

where {y} denotes the fractional part. (This follows by partial summation.) Then, if
|s− 1| � 1 we have

|ζ(s)| �
N∑
n=1

1

n<s
+N1−<s + |s|

∞∫
N

1

y<s+1
dy.

Choosing N = d|s|+ 1e and using the fact that <s > 1 we get

|ζ(s)| � log(|s|+ 2) +O(1) +
|s|
|s|+ 1

� log(|s|+ 2)

in this range. By a similar analysis taking N = 1, one obtains the bound

|ζ(s)| � 1

|s− 1|

if |s− 1| � 1.
By Lemma 3.4, ∣∣∣ζ(1 +

1

logX
+ it)

∣∣∣ � logX exp(−D(1, nit;X)2).

The lemma then follows by inserting the above bounds on |ζ(1 + 1
logX

+ it)|. �

Our final lemma (for now!) shows that a single f ∈ M0 cannot simultaneously pretend
to be niα and niβ for two different values of α and β.

Lemma 3.8 (Repulsion/uniqueness for nit). Let f ∈M0, and let α, β be two real numbers
with δ := |α− β|. Then

(D(f, niα;X) + D(f, niβ;X))2 >

{
log(1 + δ logX)−O(1) if δ 6 1;

log logX − log log(2 + δ)−O(1) if δ > 1.

Proof. By the triangle inequality we have

(D(f, niα;X) + D(f, niβ;X))2 > D(niα, niβ;X)2 = D(1, ni(β−α);X)2

and this can be lower-bounded by Lemma 3.7. The lemma then follows. �

Corollary 3.9. Let f ∈M0 be real-valued, and suppose that there is a real α for which

D(f, nit;X)2 = ot(log logX).

Then t = 0.

In other words, a real-valued f ∈ M0 cannot be weakly nit-pretentious for any complex
multiplicative phase nit.

Proof. Suppose that there is a t 6= 0 for which D(f, nit;X)2 = ot(log logX). Since f is
real-valued, we have D(f, n−it;X) = D(f, nit;X) = ot(log logX). Taking X large enough,
this contradicts Lemma 3.8 for α = t and β = −t. �
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We saw in the previous lecture that D(f, 1;X) controlled the behaviour of the average
MX(f) when f ∈M0 was positive and real-valued, and controlled MX,log(f) for all f ∈M0.
The theorem of Wirsing (which we quoted but didn’t prove), stated that D(f, 1;X) controlled
MX(f) for all f ∈M0.

In the 1960s Halász proved a vast generalisation of all of these results.

Theorem 3.10 (Halász’s Theorem, qualitative version). Let f ∈M0.

(1) Suppose that there exists t ∈ R for which D(f, nit;∞) <∞. Then

MX(f) = (1 + o(1))
X it

1 + it

∏
p6X

(
1− 1

p

)(
1 +

f(p)

p1−it +
f(p2)

p2−2it
+ · · ·

)
as X →∞.

(2) Suppose that D(f, nit;∞) =∞ for all t ∈ R. Then

MX(f) = o(1)

as X →∞.

This is a real dichotomy, because, although the infinite product∏
p6X

(
1− 1

p

)(
1 +

f(p)

p1−it +
f(p2)

p2−2it
+ · · ·

)
needn’t converge, one can show (see Examples Sheet 1) that it never diverges to 0.

Lectures 4 and 5 will be devoted to the proof of this theorem, and to some corollaries.

To finish this lecture, we will show how the notion of D(f, g;X) can be used to recover
the classical argument for showing a zero-free region for ζ.

Proof that ζ(ρ) 6= 0 if <ρ = 1. For all γ ∈ R, by the triangle inequality we have

D(1, n2iγ;X) = D(n−iγ, niγ;X) 6 D(n−iγ, µ;X) + D(µ, niγ;X) = 2D(µ, niγ;X).

Now, suppose that γ0 6= 0 and that ζ(1+iγ0) = 0. In that case 1/ζ(s) has a pole at s = 1+iγ0,
and therefore by considering the Laurent series of 1

ζ(s)
around the point s = 1 + iγ0, if X is

large enough we have ∣∣∣ 1

ζ(1 + 1
logX

+ iγ0)

∣∣∣�γ0 logX.

Therefore, by Lemma 3.4 (for the function f = µ), we have

logX � logX exp(−D(µ, niγ0 ;X)2).

So

D(µ, niγ0 ;X) = Oγ0(1),

i.e. µ strongly pretends to by niγ0 . By the above inequalities we have

D(1, n2iγ0 ;X) = Oγ0(1).

But then ∣∣∣ζ(1 +
1

logX
+ iγ0

)∣∣∣ � (logX) exp(−D(1, n2iγ0 ;X)2)�γ0 logX,

so ζ(s) has a pole at s = 1 + 2iγ0, which it doesn’t. �
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The general philosophy of this proof (that if ζ(1 + iγ0) = 0 then niγ0 points towards −1
a lot of the time, and so n2iγ0 points towards 1 a lot of them) was known to Hadamard.
But D(f, g;X), with its triangle inequality, packages this observation extremely conveniently.

In a usual first analytic number theory course, the standard identity (due to Mertens)
that is used to prove that ζ(s) has no zeros on the 1-line is

ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| > 1

when σ > 1. One can derive this inequality from the triangle inequality for D too (exercise).
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4. Lecture 4: Preliminaries for Halász’s Theorem, or ‘The analytic
number theorist’s tool box’

In this lecture we will begin (but probably not finish) going through some of the prelim-
inary results that we will use in the course of proving Halász’s theorem. These results in
themselves dance across various tools of the analytic number theorist’s trade, and so they
have some value in their own right (and not just as lemmas on the way to proving the first
big theorem of these notes).

A simple sieve
The central idea in the modern proof of Halász’s theorem is a decomposition of the sum∑
n6X f(n) as a certain triple sum, which then enables a factorisation of the associated

Dirichlet series as a triple product. To effect such a decomposition, it will be useful to
assume that the summation variable n possessed prime factors in various helpful intervals,
i.e. to show that ∑

n6X

1(n,
∏
p∈I p)=1

is small, where I is the interval in which we hope to find a prime factor.
This is a sieving problem, and it can be attacked by any of the standard small sieves

(Selberg sieve, β-sieve). However, to show some of the unexpected power of the estimates
on the averages of multiplicative functions that we have proved already, let me present a
rather different proof.

Lemma 4.1 (A simple sieve). For all X > 1, and for all m ∈ N uniformly,

|{n 6 X : (n,m) = 1}| � X
∏
p|m
p6X

(
1− 1

p

)
.

Proof. Let f ∈M0 be the completely multiplicative function given by

f(n) =

{
1 if (n,m) = 1

0 otherwise.

Then, as we have already established in Lemma CITE,

MX(f)�MX,log(f)�
∏
p6X

(
1− 1

p

)(
1− f(p)

p

)−1

by Mertens’ theorem. But this is equal to∏
p|m
p6X

(
1− 1

p

)
.

as required. �

This lemma implies the following result (which is what we will actually use).

Lemma 4.2 (Conveniently placed prime factors). Let ε > 0. Then∑
n6X

∃p∈[Xε,X] s.t. p|n
∃p∈[Xε2 ,Xε] s.t. p|n

1 = X −O(εX).

In other words, at least a proportion 1−O(ε) of integers n 6 X have a prime factor in the

range [Xε, X] and in the range [Xε2 , Xε].
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Proof. This follows from the above lemma together with the estimate∏
Xε6p6X

(
1− 1

p

)
∼ log(Xε)

logX
= ε.

�

The Brun–Titchmarsh inequality
How many prime numbers should there be in the interval [Y, Y +X)? Well, ‘on average’

one would expect around X/ log Y primes (as the density of primes at scale Y is around
1/ log Y ). However, if we believe the Hardy–Littlewood k-tuples conjecture (which is a
generalisation of the twin prime conjecture), then sometimes the interval [Y, Y +X) should
have as many as X/ logX primes in it. It is a major (and difficult!) open problem to show
that

sup
Y

∑
p∈[Y,Y+X)

1 6 (1 + o(1))
X

logX

as X → ∞. (Solving this problem would, among other things, rule out the existence of
Siegel zeros). However, the Brun–Titchmarsh inequality shows that this conjecture is true
up to a constant multiplicative factor.

Theorem 4.3 (Brun–Titchmarsh inequality, q = 1 version). For X > 2 we have

sup
Y

∑
p∈[Y,Y+X)

1� X

logX
.

The best known value of the implied constant is 2, which was proved by Montgomery and
Vaughan in the 1970s. Replacing 2 by 1.999 would already rule out the existence of Siegel
zeros. There are similar results for primes in arithmetic progressions with common difference
q, but we won’t need those in this course.

Note that when Y is large compared to X then the Brun–Titchmarsh inequality cannot
be obtained even by assuming RH, as that would only give an upper bound of Oε(Y

1/2+ε).

The proof is again via sieve methods, which we will not expose in full generality here.
However, we can present a proof using the Selberg sieve weights, emphasising the aspects
that are to do with estimating sums of multiplicative functions.

Proof. First, we note that if Y 6 X the desired bound follows from Chebyschev’s estimates,
so henceforth we may assume that Y > X. Now let z = Xu for some small constant u, and
for d 6 z define the weight

ρd =
dµ(d)

L(z)ϕ(d)

∑
q6z/d

(q,d)=1

µ2(q)

ϕ(q)
,

where L(z) :=
∑

q6z
µ2(q)
ϕ(q)

. We will not explain so thoroughly why ρd is a good weight to use

here, although we will see in the course of the calculation that it has certain seemingly mag-
ical properties. In the full treatment of the Selberg sieve, this weight is derived as a solution
to a certain quadratic optimisation problem. One may show that ρd ≈ µ(d) log(z/d)/ log z
for small d, so one can think of it as an ‘arithmetically smoothed’ Möbius fucntion.

We note that ρ1 = 1, and so if Y > X say we have∑
p∈[Y,Y+X)

1 6
∑

Y 6n<Y+X

(∑
d|n
d6z

ρd

)2

,
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since the only contribution to the sum when n is prime comes from d = 1. Expanding out
the square and rearranging, we get an upper bound of∑

d1,d26z

ρd1ρd2
∑

Y 6n<Y+X
d1,d2|n

1 = X
∑

d1,d26z

ρd1ρd2
[d1, d2]

+O
((∑

d6z

|ρd|
)2)

,

where [d1, d2] is the least common multiple of d1 and d2.
Bounding crudely (one can do better here with some effort) we have

|ρd| 6
d

ϕ(d)
=
∏
p|d

(
1− 1

p

)−1

6
∏
p6z

(
1− 1

p

)−1

� log z 6 logX,

so the error term is O(X2u log2X). Regarding the main term, since (d1, d2)[d1, d2] = d1d2

and 1 ? ϕ = id, we have ∑
d1,d26z

ρd1ρd2
[d1, d2]

=
∑

d1,d26z

ρd1ρd2
d1d2

(d1, d2)

=
∑

d1,d26z

ρd1ρd2
d1d2

∑
u|d1
u|d2

ϕ(u)

=
∑
u6z

ϕ(u)
(∑
d6z
u|d

ρd
d

)2

.

Analysing the inner sum above, by the multiplicativity of µ and ϕ we get∑
d6z
u|d

ρd
d

=
µ(u)

L(z)ϕ(u)

∑
d6z/u

(d,u)=1

µ(d)

ϕ(d)

∑
q6z/du

(q,du)=1

µ2(q)

ϕ(q)

=
µ(u)

L(z)ϕ(u)

∑
n6z/u

(n,u)=1

µ2(n)
(µ
ϕ
?
µ2

ϕ

)
(n),

since if n is square free and coprime to u, and if qd = n, then (d, u) = 1, (q, du) = 1, and
µ2(d) = µ2(q) = 1. But vice versa, if (d, u) = 1, (q, du) = 1, and µ2(d) = µ2(q) = 1, then if
qd = n we have µ2(n) = 1 and (n, u) = 1.

By direct calculation,

µ2(n)
(µ
ϕ
?
µ2

ϕ

)
(n) = δ(n).

So ∑
d6z
u|d

ρd
d

=
µ(u)

L(z)ϕ(u)
,

and thus ∑
d1,d26z

ρd1ρd2
[d1, d2]

=
1

L(z)2

∑
u6z

µ2(u)

ϕ(u)
=

1

L(z)
.

So ∑
Y 6p<Y+X

1 6
X

L(z)
+O(X2u log2X).

If we had time to introduce some more sophisticated techniques for estimating sums of
multiplicative functions we would be able to show that

L(z) ∼ log z.
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As it is we may satisfy ourselves with the estimate

L(z) =
∑
q6z

µ2(q)

ϕ(q)
=
∑
q6z

µ2(q)

q

∏
p|q

(
1−1

p

)−1

=
∑
q6z

µ2(q)

q

∏
p|q

(
1+

1

p
+

1

p2
+· · ·

)
>
∑
q6z

1

q
� log z

if z > 2.
Hence finally we have ∑

Y 6p<Y+X

1� X

log z
+O(X2u log2X)� X

logX

if we choose u = 1/3, say. �

The same proof gives the following more precise estimate, which is what we will actually
use later.

Theorem 4.4. Let ε > 0, X > 2, and let S(Xε) denote {n ∈ N : p|n⇒ p > Xε}. Then

sup
Y

∑
n∈S(Xε)

Y 6n<Y+X

1� ε−O(1) X

logX
.

Proof. Pick ε = u in the above proof. �

Some facts about additive Fourier transforms
I mentioned in the preamble to these notes that we would assume some basic familiarity

with the Fourier transform. However, it is always prudent to go over a few of the fundamental
notions again – if only to fix normalisations!

Definition 4.5 (Fourier transform). If f : R −→ C and f ∈ L1(R), then we define the

Fourier transform f̂ : R −→ C to be the function

f̂(ω) =

∞∫
−∞

f(x)e−2πiωx dx.

This might not be the normalisation that you are used to, but it tends to be the more
commonly used normalisation in analytic number theory, i.e we use phase functions e2πiωx

rather than eiωx.
Regarding the Fourier inversion formula, the following is a general result (but one that

can be hard to apply).

Theorem 4.6 (Fourier inversion for L1 functions). If f is continuous such that both f, f̂ ∈
L1(R), then

f(x) =

∞∫
−∞

f̂(ω)e2πixω dω.

As far as possible in this course we will work with ‘nice’ functions, e.g. Schwarz functions,
which are smooth function all of whose derivatives vanish faster than any polynomial. In
fact, a lot of the time we will work with the even smaller class of compactly supported
smooth functions.

Theorem 4.7 (Existence of bump functions). The function

g(x) =

{
e
− 1

1−x2 if |x| < 1

0 if |x| > 1

is smooth, and supported on [−1, 1].
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Proof. Exercise. �

These functions are pleasant to work with because their Fourier transforms are rapidly
decaying; in fact the Fourier transform is an automorphism of the space of Schwartz func-
tions.

Theorem 4.8 (Fourier transform of Schwarz functions). Define the Schwarz class S to be
the set of all functions f ∈ C∞(R) for which for all j,m ∈ Z>0, |f (j)(x)| = of,j,m(|x|−m) as

|x| → ∞. Then f̂ ∈ S too, and the Fourier inversion formula holds.

Sketch proof. The function f and all its derivatives lie in L1(R). So integrating by parts j

times yields |f̂(ω)| �j,f (1 + |ω|)−j. Taking j > 2 then we have f̂ ∈ L1(R) too, so Fourier
inversion holds.

Differentiating under the integral definition of f̂(ω), and then applying integration by

parts as above, one may show that f̂ ∈ S. �

If f, g ∈ L1(R) ∩ L2(R), say, we define the additive convolution (f ∗ g) ∈ L1(R) by the
formula

(f ∗ g)(x) =

∞∫
−∞

f(x− y)g(y) dy.

It is a standard lemma that

f̂ ? g = f̂ ĝ.

It will be occasionally convenient to use some properties of the Fourier transforms of
specific functions.

Lemma 4.9 (Continuous Fejér kernel). If

f(x) =

{
1− |x| if |x| 6 1

0 if |x| > 1,

then

f̂(ω) =
(sin πω

πω

)2

.

Proof. Exercise. �

Lemma 4.10 (Fourier transform of an interval). Let I ⊂ R be any finite closed interval,
with indicator function 1I and length |I|. Then

|1̂I(ω)| � min(|I|, |ω|−1).

Proof. We always have

|1̂I | =
∣∣∣ ∞∫
−∞

1I(x)e−2πixω dx
∣∣∣ 6 ∞∫

−∞

|1I(x)| dx = |I|.

Furthermore, letting I = [a, b], we get

|1̂I | =
∣∣∣ b∫
a

e−2πiωx dx
∣∣∣ =

1

2π|ω|
|e−2πiωb − e−2πiωa| � |ω|−1.

�
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A first mean value theorem for Dirichlet polynomials
We have already seen the relevance, in our discussion of Granville–Soundararajan distance,

the relevance of the size of Dirichlet series |F (1+ 1
logX

+it)|. In more sophisticated arguments

– like the proof of Halász’s inequality to come, but most especially when we are considering
shorter averages of multiplicative functions – one will also want to consider the mean value
of objects such as |F (1 + 1

logX
+ it)| taken over a range of values of t.

We begin by introducing the prototypical result in the theory of such mean values.

Theorem 4.11 (Montgomery). For any coefficients an ∈ C, we have∫ T

−T

∣∣∣∑
n6N

an
nit

∣∣∣2 dt = (2T +O(N))
∑
n6N

|an|2.

How should one think of this result? Well, suppose that all |an| ≈ 1. Then square-root
cancellation in the sum

∑
n6N ann

−it for every t ∈ [−T, T ] would yield an upper bound

of O(TN), i.e. O(T
∑

n6N |an|2). However a single unit interval t ∈ [t0, t0 + 1) on which

no cancellation occurs, i.e. on which |
∑

n6N ann
−it| ≈ N , would yield an upper bound of

N2. This can of course happen, say when an = n−it0 for some fixed t0. So, at this level of
generality, Montgomery’s mean value theorem is the best we can hope for. As the course
progresses, we will see increasingly sophisticated approaches for handling mean-values of
Dirichlet polynomials, which can be used to improve upon Montgomery’s estimate in more
specific situations, e.g. where the support of the coefficient sequence (an) is sparse.

Proof. One line summary of the proof: “introduce a smoother majorant for 1[−T,T ] into the
integral, and then expand the square”.

Let Ψ ∈ C∞(R) be a smooth non-negative bump function supported on [−1, 1], with∫
Ψ = 1. Let ΨN(x) := 1

N
Ψ(x/N). Then

∫
ΨN = 1 and ΨN is supported on [−N,N ].

Then consider the function

gN,T := 1[−T−N,T+N ] ∗ΨN .

By construction we have

1[−T,T ](x) 6 gN,T (x) 6 1[−T−2N,T+2N ],

ĝN,T (0) = 2T + 2N and

|ĝN,T (ω)| = |1̂[−T−N,T+N ](ω)||Ψ̂N(ω)| � |ω|−1|Ψ̂(Nω)| � N−1|ω|−2,

say. (It may help to draw a sketch of the function gN,T .)
Then ∫ T

−T

∣∣∣∑
n6N

an
nit

∣∣∣2 t 6 ∫ ∞
−∞

g(t)
∣∣∣∑
n6N

an
nit

∣∣∣2 dt =
∑

16m,n6N

amanGN,T

(m
n

)
,

where

GN,T (x) =

∞∫
−∞

gN,T (t)x−it dt.

But GN,T (x) = ĝN,T ((log x)/2π). Therefore, separating out the terms with m = n from the
others, we have an upper bound of

ĝN,T (0)
∑
n6N

|an|2 +O
( 1

N

∑
16m 6=n6N

|am||an|
| log(m/n)|2

)
.
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We know ĝN,T (0) = 2T + 2N , and also for 1 6 m 6= n 6 N one has (by the mean value
theorem)

| log(m/n)| = | logm− log n| � |m− n|
m+ n

� |m− n|
N

.

Therefore, we may derive an overall upper bound of

(2T + 2N)
∑
n6N

|an|2 +O
(
N

∑
16m6=n6N

|am||an|
|m− n|2

)
= (T + 2N)

∑
n6N

|an|2 +O
(
N
∑
n6N

|an|2
∑
m6N
m6=n

1

|m− n|2
)
,

since |am||an| 6 |an|2+|am|2. The inner sum is convergent, and thus the theorem follows. �

In certain textbook handlings one is much more explicit with the smoothing used, for
instance letting

gN,T (t) =



0 if t 6 −N
1 + t

N
if −N < t 6 0

1 if 0 < t 6 T

1− t−T
N

if T < t 6 T +N

0 if t > T +N.

But in the handling above I wanted to emphasise how essentially any smoothing at scale N
is adequate for the theorem.
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5. Lecture 5: Proof of Halász’s Theorem

Let me begin this lecture with an important acknowledgement: in this lecture we will be
following some notes of Terence Tao rather closely (254A Notes 10, from his blog).

A more precise mean value theorem
We mentioned last time how Montgomery’s mean value theorem is best possible in full

generality. However, there are various other tricks that one can employ to obtain stronger
mean value estimates in cases where one knows something more about the coefficients.

We start with a simple lemma for relating arithmetic sums with Dirichlet polynomials.

Lemma 5.1. If f, g : N −→ C are any functions with finite support, and ψ : R −→ C is

continuous function such that ψ, ψ̂ ∈ L1(R), then

∞∑
n=1

∞∑
m=1

f(n)

n

g(m)

m
ψ((logm− log n)/2π) =

∞∫
−∞

∞∑
n=1

f(n)

n1+it

∞∑
m=1

g(m)

m1+it
ψ̂(t) dt.

Proof. Swapping the orders of summation on the right-hand side (which is allowed by Fu-
bini’s theorem), the proposition would follow from the identity

ψ((logm− log n)/2π) =

∞∫
−∞

ψ̂(t)(m/n)it dt.

But this is just the Fourier inversion formula. �

Using this lemma we can obtain the following mean value estimate.

Lemma 5.2 (Mean values/ sums over intervals). If f : N is a function with finite support,
and T > 10, then

T∫
−T

∣∣∣ ∞∑
n=1

f(n)

n1+it

∣∣∣2 dt� ∞∑
d=1

1

d

∣∣∣T
d

∑
m:|m−d|6100d/T

|f(m)|
∣∣∣2.

Proof. Let

ψ(x) =

{
π2

4
(1− |x|) if |x| 6 1

0 if |x| > 1.

Then, using the explicit Fourier transform pairs that we stated last lecture, we have

ψ̂(ω) =
π2

4

(sin πω

πω

)2

.

So ψ̂(ω) > 1[−1/2,1/2](ω) for all ω ∈ R. Therefore

T∫
−T

∣∣∣ ∞∑
n=1

f(n)

n1+it

∣∣∣2 dt 6 ∞∫
−∞

∣∣∣ ∞∑
n=1

f(n)

n1+it

∣∣∣2ψ̂(t/2T ) dt.

Apply the previous lemma with g = f and the function t 7→ ψ̂(t/2T ). We obtain

2T
∞∑
n=1

f(n)

n

∞∑
m=1

f(m)

m
ψ((logm− log n)T/π).

Since ψ is supported on [−1, 1], there is only a contribution from pairsm,n with | log(m/n)| 6
π/T , which means that there is only a contribution from pairs m,n with

|m− n| 6 π(m+ n)/T
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(by the mean value theorem applied to log).
So one already has a restriction to pairs m,n which lie close together. The rest of proof

involves massaging this observation into the form stated in the lemma (which will be par-
ticularly convenient for our application).

We have an upper bound of

� T
∑

n,m:|n−m|6π(m+n)/T

|f(n)||f(m)|
nm

� T
∑

n,m:|n−m|6π(m+n)/T

|f(n)||f(m)|
nm

T

(m+ n)

∑
d

|d−n|6π(m+n)/T
|d−m|6π(m+n)/T

� T 2

∞∑
d=1

∑
m,n

|m−d|6π(m+n)/T
|n−d|6π(m+n)/T

|f(n)||f(m)|
nm(m+ n)

.

Since T > 10 we have that all of n,m, (m + n), d have the same order of magnitude, and
this yields an upper bound of

� T 2

∞∑
d=1

1

d3

∑
n:|n−d|6100d/T
m:|m−d|6100d/T

|f(n)||f(m)|.

This gives the lemma. �

We are ready to prove Halász’s Theorem. However, there is a dilemma in exposition here.
The swiftest way to prove the result would be to quote a standard device in analytic number
theory known as Perron’s formula. However, this formula uses Fourier inversion as applied
to a discontinuous function, which some people (including me) find to be distasteful when
other approaches exist that deal with Schwartz functions throughout.

So, I will be presenting a version that does not appeal to Perron’s formula. Though we
will have to expend a small amount of sweat in bandlimiting a certain weight function, I
strongly believe this to be conceptually more satisfying than the alternative.

Proof of Halász’s theorem. Recall that we have a function f ∈ M0 and we assume that for
all t ∈ R we have D(f, nit;∞) =∞.

As it stands this statement has no uniformity in |t|, and so we begin with some general
analysis in order to derive for free some such weak uniformity. We claim that there exists
some (possibly very slowly growing) function T = T (X) for which

lim
X→∞

inf
|t|6T (X)

D(f, nit;X) =∞.

Indeed, let us first establish that for all fixed T we have limX→∞ inf |t|6T D(f, nit;X) =
∞. Were this not so, then there would exist some K > 0, some sequence (tm)∞m=1 with
tm ∈ [−T, T ], and some sequence Xm → ∞ as m → ∞ for which D(f, nitm ;Xm) 6 K for
all m. By passing to a subsequence, we may assume that the sequence tm converges, say to
t∗. Since D(f, nit∗ ;X) → ∞ as X → ∞, there is some X∗ for which D(f, nit∗ ;X) > 2K if
X > X∗. But by continuity we have D(f, nitm ;X∗)→ D(f, nit∗ ;X∗) as m→∞. Yet, if m is
large enough so that Xm > X∗, we have

D(f, nitm ;X∗) 6 D(f, nitm ;Xm) 6 K.

So

lim
m→∞

D(f, nitm ;X∗) 6 K,
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contradicting the definition of X∗.
Now, we show how to construct T (X). For each n ∈ N, let Xn denote the threshold such

that inf |t|6nD(f, nit;X) > n for all X > Xn. Then for X ∈ [Xn, Xn+1) define T (X) = n.
Then T (X) → ∞ as X → ∞ and inf |t|6T (X) D(f, nit;X) > n for all X > Xn. So we have
proved our claim.

Next we describe the decomposition of the function f that is central to the argument.
Let ε > 0 be another parameter to be chosen (it will tend to zero very slowly), and write

fsmall =

{
f(n) if p|n⇒ p ∈ [1, Xε2 ]

0 otherwise,

fmed =

{
f(n) if n ∈ [2, X] and p|n⇒ p ∈ (Xε2 , Xε]

0 otherwise,

and

flarge =

{
f(n) if n ∈ [2, X] and p|n⇒ p ∈ (Xε, X]

0 otherwise,

and let

fsplit = fsmall ? fmed ? flarge.

Note that fsmall ∈M0 too, but fmed, flarge, fsplit /∈M0 owing to their values at 1.
We know that f(n) = fsplit(n) if 2 6 n 6 X and n has at least one prime factor in

(Xε2 , Xε] and at least one prime factor in (Xε, X]. We established last lecture that all but
O(εX) of the natural numbers n 6 X have this property. So, we have

MX(f) = MX(fsplit) +O(ε).

Furthermore fsplit is supported on X-friable numbers, and so
∑

n>1 |fsplit(n)|/n is convergent
(as it has a finite Euler product).

Now

MX(fsplit) =
∑

16n6X

fsplit(n)

n
ψ(log n− logX),

where ψ(u) = eu1[−∞,0](u). We are going to truncate on the Fourier side at height T = T (X),
at a small cost in physical space. To that end, let W be a Schwarz function with

∫
W = 1

such that Ŵ is a smooth bump function supported in [−1, 1]. Let WT (x) = TW (Tx), and
define

ψT = ψ ∗WT .

Draw a rough picture of this function, if it helps you! This trick is very similar to the trick
we used to prove Montgomery’s mean value theorem last lecture. The idea is that WT is
concentrated on the set |x| 6 1/T , which corresponds (by the uncertainty principle) to the

fact that ŴT (ω) is concentrated on the set |ω| 6 T .
Since

∫
WT = 1 one may calculate

|(ψ − ψT )(u)| 6 T

∞∫
−∞

|ψ(u− v)− ψ(u)||W (Tv)| dv

6

∞∫
−∞

|ψ(u− v

T
)− ψ(u)||W (v)| dv.
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We always have |ψ − ψT (u)| � 1. Furthermore, if u > 1/T we have

|ψ − ψT (u)| �
∫ ∞
Tu

|W (v)| � (Tu)−10.

If −2 6 u 6 1/T we use the Lipschitz constant bound |eu−vT−1 − eu| � vT−1 to obtain the
bound |ψ − ψT (u)| � T−1. Finally, if u < −2 we get |ψ − ψT (u)| � T−1eu/2 � T−1|u|−10.

All told, this means that
∑

16n6X

fsplit(n)

n
ψ(log n− logX) is

=
∑
n>1

fsplit(n)

n
ψT (log n− logX) + E1 + E2 + E3 + E4,

where E1, E2, E3, and E4 are four error terms, according to the various ranges of n.
All of the error terms may be shown to beO(1/T ). To give the gory details, E1 corresponds

to n > Xe1/T , so

E1 �
∑

n>Xe1/T

1

nT 10(log n− logX)10
�

∞∑
k=1

∑
Xek/T6n6Xe(k+1)/T

1

nk10
� 1

T
.

E2 corresponds to Xe−1/T 6 n 6 Xe1/T , and we simply get

E2 �
∑

Xe−1/T6n6Xe1/T

1

n
� 1

T
.

E3 corresponds to Xe−2 6 n 6 X, and we get

E3 �
∑

Xe−26n6Xe−1/T

1

n
· 1

T
� 1

T
.

The final range E4 corresponds to 1 6 n 6 Xe−2, and we have the bound

E4 �
1

T

∑
16n6Xe−2

1

n(logX − log n)10
� 1

T

∞∑
k=2

∑
Xe−k−16n6Xe−k

1

nk10
� 1

T
.

O
(∑
n>1

1

n
· 1

(1 + T | log n− logX|)100

)
.

So ∑
16n6X

fsplit(n)

n
ψ(log n− logX) =

∑
n>1

fsplit(n)

n
ψT (log n− logX) +O(1/T ).

Then, applying the Fourier inversion theorem to ψT , we have

∑
n>1

fsplit(n)

n
ψT (log n− logX) =

∑
n>1

fsplit(n)

n

∞∫
−∞

ψ̂T (t)e2πi(logn−logX)t dt

=

T∫
−T

(∑
n>1

fsplit(n)

n1−2πit

)
X−2πitψ̂T (t) dt,

since ψ̂T (t) = ψ̂ŴT and by construction ŴT (ω) = Ŵ (ω/T ) is supported on [−T, T ]. Also
observe that we may use Fubini’s theorem to swap the orders of summation and integration,
since

∑
n61 |fsplit(n)|/n converges.
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Bounding |ψ̂T (t)| � 1, and using |X−2πit| = 1, we get an upper bound of

O
( T∫
−T

∣∣∣∑
n>1

fsplit(n)

n1−it

∣∣∣ dt).
This is

�
T∫

−T

∣∣∣∑
n>1

fsmall(n)

n1−it

∣∣∣∣∣∣∑
n>1

fmed(n)

n1−it

∣∣∣∣∣∣∑
n>1

flarge(n)

n1−it

∣∣∣ dt
� sup
|t|6T
|Fsmall(1 + it)|

( T∫
−T

|Fmed(1 + it)|2 dt
)1/2( T∫

−T

|Flarge(1 + it)|2 dt
)1/2

by the Cauchy-Schwarz inequality, were F∗ denotes the Dirichlet series associated with the
relevant functions.

From previous remarks we have

sup
|t|6T
|Fsmall(1 + it)| � (logXε2) exp(− inf

|t|6T
D(f, nit;Xε2))

� ε2(logX) exp(− inf
|t|6T

D(f, nit;X)) exp(−2 log ε)

� (logX) exp(− inf
|t|6T

D(f, nit;X)).

By the mean value theorem from the start of this lecture, for ∗ = med or large, we have

T∫
−T

|F∗(1 + it)|2 dt�
∑

16d6X

1

d

(T
d

∑
n>2

|n−d|6100d/T

p|n⇒p>Xε2

1
)2

.

The inner sum is in fact supported on n > Xε2 , so we can restrict the outer sum to d > Xε2/2,
provided T is large enough. Then by the Brun-Titchmarsh inequality (as given in our

previous Theorem 4.4), if T 6 Xε3 say this sum is

� ε−O(1)
∑

Xε/26d6X

1

d

(T
d
· d
T
· 1

logX

)2

� ε−O(1) 1

logX
.

This saving of (logX)−1 is vital.
Bringing everything together, we have

|MX(f)| � logX exp(− inf
|t|6T

D(f, nit;X)) · ε−O(1)

(log x)1/2
· ε−O(1)

(log x)1/2
+ ε+

1

T

� ε−O(1) exp(− inf
|t|6T

D(f, nit;X)) + ε+
1

T
.

Since T = T (X) → ∞ and exp(− inf
|t|6T

D(f, nit;X)) → 0, picking ε = ε(X) → 0 suitably

slowly we derive MX(f) = o(1) as X →∞, as claimed. This finishes the proof. �

Quantitative bounds
Unsurprisingly, by taking more care one can do better quantitatively in this argument.

Montgomery and Tenenbaum were the first to prove a result of the strength

MX(f)� (1 +DX,T )e−DX,T +
1

T
,
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where DX,T := inf |t|6T D(f, nit;X)2. Here T can range up to a power of logX. The smallest
that the right-hand side can ever be is (X log logX)/(logX), and it is this small for f = µ,
so we have established that

MX(µ) = O
( log logX

logX

)
,

and hence the prime number theorem follows.
But with a terrible error term, compared to what is known by methods of complex analysis,

namely

MX(µ) = O(e−c(logX)3/5/(log logX)1/5)).

The problem here is that Halálz’s theorem is too general, in that it holds for all 1-bounded
multiplicative functions. The statement of Montgomery and Tenenbaum is in fact sharp,
in that there are multiplicative functions f for which |MX(f)| really is large as their upper
bound. (This will be an exercise on the second examples sheet.)

A few years ago Dimitris Koukoulopoulos worked out how to combine ideas in pretentious
number theory with a variety of other tricks to recover the best known bound in the prime
number theorem using pretentious techniques. We won’t discuss that work further in this
course, however.
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6. Lecture 6: Dirichlet characters

We now begin the second section of the course. Here, we will use some of the knowledge we
have gained so far about the averages of multiplicative functions to understand cancellation
in partial sums of Dirichlet characters. The main reference here is the paper of Granville–
Soundararajan ‘Large character sums: Pretentious characters and the Polya-Vinogradov
Theorem’ which I mentioned in the preamble.

Before we go any further, I need to introduce a certain amount of the classical theory of
Dirichlet characters. The entirety of this lecture will most likely be familiar to any reader
with a background in classical analytic number theory. Nonetheless, it is important that we
review the fundamentals before reaching out into new territory.

Before anything else, let me introduce a time-saving piece of notation, namely the short-
hand e(θ) for e2πiθ. This is a common shorthand in the field, and can help to clean up
otherwise unwieldy expressions. For example, if θ ∈ Z then automatically e(θ) = 1.

Now let us begin in earnest by defining a few aspects of the theory of discrete Fourier
transforms.

Definition 6.1 (Characters). A character on a finite abelian group G is any group homo-

morphism ξ : G→ (C,×). We let Ĝ denote the set of all characters on G.

Observe that, since for any character ξ and g ∈ G we have 1 = ξ(eG) = ξ(g|G|) = ξ(g)|G|,
the set ξ(G) is contained within the |G|th-roots of unity. In particular ξ(G) is a subset of the

unit circle. Furthermore, if ξ1, ξ2 ∈ Ĝ then ξ1ξ2 ∈ G, and this makes Ĝ into a group under
pointwise multiplication (with identity element given by the map g 7→ 1, and the inverse
of ξ just being the function ξ). We will sometimes use 1 to denote the identity character
(although once we move onto specialising to Dirichlet characters we will have a different,
and better, notation).

Two groups will be of particular importance in this course, namely Z/qZ under addition
and (Z/qZ)× under multiplication (where this second group is the multiplicative group of
units modulo q, i.e. the set {n 6 q : (n, q) = 1} under multiplication modulo q).

The characters on Z/qZ may be easily determined.

Lemma 6.2. Let q > 1. Then there are exactly q characters on the group Z/qZ, and they
are all of the form ξa(n) = e(an/q), where a ∈ {1, . . . , q}.

Proof. Let ξ ∈ Ẑ/qZ. We know from our observation above that for all x ∈ Z/qZ we have
that ξ(x) is a qth-root of unity. So, writing {0, 1, . . . , q − 1} for the underlying set of Z/qZ,
we may define a ∈ Z by letting ξ(1) = e(a/q). Since 1 generates Z/qZ additively, we have
ξ(n) = e(na/q) for all n, so ξ has the claimed form.

Conversely, note just by definition that any function of the form n 7→ e(na/q) is indeed a
character on Z/qZ. �

Lemma 6.3. Suppose that G1 and G2 are finite abelian groups, and that G = G1×G2. If χi
is a character of Gi and g ∈ G is written g = (g1, g2) with gi ∈ Gi, then ξ(g) := ξ1(g1)ξ2(g2)

is a character on G. Conversely, all characters in Ĝ may be written in such a form in a
unique way.

Proof. The fact that ξ1(g1)ξ2(g2) is a character just follows from the definitions, so the

content is the converse statement. Let ξ ∈ Ĝ1 ×G2, and define ξ1 : G1 −→ C by ξ1(g1) :=
ξ((g1, eG2)). Similarly, define ξ2 : G2 −→ C by ξ2(g2) := ξ((eG1 , g2)). It follows immediately

that ξ1 ∈ Ĝ1 and ξ2 ∈ Ĝ2, and that ξ = ξ1ξ2.
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Furthermore, if ξ = χ1χ2 for some χi ∈ Ĝi then by evaluating at (eG1 , g2) and (g1, eG2)
we see that χ1 = ξ1 and χ2 = ξ2. �

A particular consequence of this lemma is that |Ĝ1 ×G2| = |Ĝ1||Ĝ2|.

Lemma 6.4 (Duality and orthogonality). Let G be a finite abelian group. Then:

• G is (non-canonically) isomorphic to Ĝ;

• G is isomorphic to
̂̂
G via the map g 7→ {ξ 7→ ξ(g)}.;

• if ξ ∈ Ĝ and ξ 6≡ 1 then
∑

g∈G ξ(g) = 0;

• if g ∈ G \ {eG} then
∑

ξ∈Ĝ ξ(g) = 0;

• if ξ1, ξ2 ∈ Ĝ with ξ1 6= ξ2 then
∑

g∈G ξ1(g)ξ2(g) = 0.

Proof. Recall the classical theorem that any finite abelian group is isomorphic to a direct
product of cyclic groups, so G ∼= Cn1 ×Cn2 × · · · ×Cnr , say. Parts (1) and (3) of the lemma
may be verified directly for cyclic groups and then follow for G using the previous structure

theorem for Ĝ1 × Ĝ2.
For part (2), note that g 7→ {ξ 7→ ξ(g)} is clearly an injective group homomorphism from

G to
̂̂
G, but it is also surjective since |G| = | ̂̂G|.

Part (4) follows from applying part (3) to the group Ĝ.

Part (5) follows from applying part (3) to the character ξ1ξ2 ∈ Ĝ. �

The upshot of all these small results is the fact that Ĝ is a basis for the C-vector space of
functions {f : G −→ C}, and furthermore that this basis is orthogonal with respect to the

inner product 〈f1, f2〉 =
∑

g∈G f1(g)f2(g).

Lemma 6.5 (Discrete Fourier Transforms). If G is a finite abelian group and f : G −→ C,

define the Fourier transform f̂ : Ĝ −→ C by

f̂(ξ) =
1

|G|
∑
g∈G

f(g)ξ(g).

Then for all g ∈ G we have f(g) =
∑
ξ∈Ĝ

f̂(ξ)ξ(g). Furthermore, if f1, f2 are two such

functions we have
1

|G|
∑
g∈G

f1(g)f2(g) =
∑
ξ∈Ĝ

f̂1(ξ)f̂2(ξ).

Proof. Regarding the Fourier inversion statement, we have∑
ξ∈Ĝ

f̂(ξ)ξ(g) =
∑
ξ∈Ĝ

( 1

|G|
∑
h∈G

f(h)ξ(h)
)
ξ(g) =

∑
h∈G

f(h)
1

|G|
∑
ξ∈Ĝ

ξ(g)ξ(h).

However, ξ(g)ξ(h) = ξ(g)ξ(h−1) = ξ(gh−1), so the inner sum is |G|1g=h by the previous
lemma. Therefore the whole sum is f(g) as claimed.

The Plancherel statement follows from a similar analysis. �

We are now ready for the central definition.

Definition 6.6 (Dirichlet characters). Let q > 1. Then a Dirichlet character is a character
χ on the group (Z/qZ)×, which we extend to a function on all of Z by defining χ(n) = 0 if
(n, q) > 1, and then extending q-periodically.
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The letter χ is traditionally used to denote Dirichlet characters. We say that q is a modulus
of χ (i.e. χ is q-periodic). The Dirichlet character where n 7→ 1 if (n, q) = 1 and 0 otherwise
is called the principal character, and is traditionally denoted by χ0.

It is evident from the definition that χ ∈M0 for any Dirichlet character χ. These objects
are an indispensable tool in studying the interaction between multiplicative number-theoretic
properties and q-periodicity (e.g. primes in arithmetic progressions modulo q).

A few properties of Dirichlet characters follows quickly from the previous lemmas. Indeed,
if χ1 is a Dirichlet character with modulus q1 and χ2 is a Dirichlet character with modulus
q2 then χ1χ2 is a Dirichlet character with modulus [q1, q2]. Furthermore, if q = q1q2 with
(q1, q2) = 1 then if χ is a Dirichlet character mod q there exists unique Dirichlet characters
χi mod qi for which χ = χ1χ2. This just follows from the Chinese remainder theorem fact
that

(Z/qZ)× ∼= (Z/q1Z)× × (Z/q2Z)×.

Regarding the structure of the set of Dirichlet characters modulus q, one cannot develop
quite such a precise description as one could for the additive group (Z/qZ), but it is nearly
as good. Indeed, by the Chinese Remainder Theorem again one has

(Z/qZ)× ∼= ⊗pk‖q(Z/pkZ)×.

From a first course in elementary number theory, one recalls the fact that if p is odd
then (Z/pkZ)× is a cyclic group of size pk − pk−1, generated by some primitive root gp,k ∈
(Z/pkZ)×. Thus, by previous lemmas, characters on (Z/pkZ)× are all of the form gnp,k 7→
e(an/(pk − pk−1)) for some a ∈ Z.

The multiplicative structure of the reduced residues modulo 2k is more complicated. For
k = 1 or k = 2 the group is cyclic (of order 1 or 2, respectively). For k > 3 then the group
isn’t cyclic, but one may show that it is generated by −1 and 5, i.e. for each n mod 2k with
(n, 2) = 1 there exist unique a mod 2 and b mod 2k−2 for which n ≡ (−1)a5b mod 2k. So

(Z/2kZ)× ∼= C2 × C2k−2 ,

and one may construct characters on this group using the direct product construction from
earlier.

A quick example of the utility of characters
Since this section has been rather dense on definitions and lemmas so far, I wanted to

quickly demonstrate a way in which Dirichlet characters show their worth. Suppose that we
wanted to bound the sum ∑

n6X
n≡a mod q

λ(n),

where q is considered fixed. (This turns out to be equivalent to proving an asymptotic for
the number of primes in an arithmetic progressions modulo q.) Now, if (a, q) = d we can
factor out d to get

λ(d)
∑
n6X/d

n≡a/d mod q/d

λ(n),

so without loss of generality we may assume that a and q are coprime. But then

1n≡a mod q =
1

ϕ(q)

∑
χ mod q

χ(na−1) =
χ(a)

ϕ(q)

∑
χ mod q

χ(n),
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using the identities we proved in the five part Lemma earlier, and the multiplicativity of χ.
So ∣∣∣ ∑

n6X
n≡a mod q

λ(n)
∣∣∣ 6 1

ϕ(q)

∑
χ mod q

∣∣∣∑
n6X

λ(n)χ(n)
∣∣∣.

This inner sum is the average of a multiplicative function, and can be shown to be oq(X)
using Halász’s theorem. One should remark at this point that it is not a trivial task to show
that D(λχ, 1;∞) = ∞ when χ is a real-valued character; for those of you who know what
this statement means, the task is as difficult as showing that L(1, χ) 6= 0. However, this
being done, the divergent part of Halász’s theorem can be applied.

The upshot is that, by expanding a q-period condition in terms of Dirichlet characters,
we were able to utilise our understanding of sums of multiplicative functions in order to
understand the original q-periodic function.

Another way of seeing this effect is via Dirichlet series. Indeed, one can show that for
<s > 1 we have∑

n>1
n≡a mod q

Λ(n)

ns
=
χ(a)

ϕ(q)

∑
χ mod q

∑
n>1

Λ(n)χ(n)

ns
= −χ(a)

ϕ(q)

∑
χ mod q

L′(s, χ)

L(s, χ)
,

where

L(s, χ) :=
∑
n>1

χ(n)

ns
=
∏
p

(1− χ(p)

p

)−1

.

The distribution of Λ in arithmetic progression modulo q can thus be studied using the
behaviour of the (in general) well-behaved Dirichlet series L(s, χ).

There are some specific examples of Dirichlet characters that you will probably have
already met in previous number theory courses. Indeed, if (n

p
) denotes the Legendre symbol

modulo p, i.e.

(n
p

)
=


0 if p|n
−1 if n is not a quadratic residue modulo p

1 if n is a quadratic residue modulo p,

then this is a Dirichlet character modulo p. Moreover it is a real Dirichlet character, in the
sense that it takes real values. The real Dirichlet characters have an important (but still
somewhat mysterious) role in the theory: we will mostly avoid them in this course.

Primitive Dirichlet characters
When q is prime, most elementary manipulations of the Dirichlet characters modulo q are

straightforward. For composite q, an extra phenomenon occurs.

Definition 6.7. Let χ be a Dirichlet character mod q, and let χ∗ be a Dirichlet character
mod d, for some d|q. We say that χ is induced by χ∗ if

χ(n) =

{
χ∗(n) if (n, q) = 1;

0 otherwise.

If χ is not induced by any such character χ∗ modulo d, for any d|q with d < q, then we say
that χ is primitive.

Examples
Of course if χ0 is the principal Dirichlet character modulo q, then χ0 is induced by the

unique Dirichlet character of period 1.
Slightly less trivially, consider say the character modulo 15 given by χ(1) = 1, χ(2) = −1,

χ(4) = 1, χ(7) = −1, χ(8) = −1, χ(11) = 1, χ(13) = −1, χ(14) = 1 (then extended
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periodically modulo 15, and with χ(n) = 0 when (n, 15) > 1. Then one can see that actually
χ is induced by the character χ∗ modulo 5 given by χ∗(1) = 1, χ∗(2) = −1, χ∗(3) = −1,
χ∗(4) = 1, i.e. χ is induced by the Legendre symbol modulo 5 (which is itself primitive).

Lemma 6.8. For each Dirichlet character χ, there is a unique primitive Dirichlet character
χ∗ (possibly equal to χ) such that χ∗ induces χ.

Proof. Exercise (see Davenport). �

If the primitive character χ∗ which induces χ is a Dirichlet character to modulus q, we
call d the conductor of χ (and of χ∗).

Now we shall give a consequence of primitivity that will be useful when we analyse objects
called Gauss sums below.

Lemma 6.9. Let χ be a primitive Dirichlet character modulo q. Then if d|q and d < q, for
every integer a we have ∑

n6q
n≡a mod d

χ(n) = 0.

Actually the second statement is equivalent to χ being primitive.

Proof. Since χ is primitive, χ is not induced by any character modulo d. Therefore there
exist m,n such that m ≡ n mod d but χ(m) 6= χ(n) (and χ(mn) 6= 0). (Indeed, otherwise
the definition χ∗(m) = χ(n) if m ≡ n mod d and χ(n) 6= 0 gives a well-defined character χ∗

modulo d which induces χ .) Since (m, q) = 1 and (n, q) = 1, we may pick a c such that
cm ≡ nmod q. Then c ≡ 1 mod d, (c, q) = 1, but χ(c) 6= 1.

We can use this c to prove the lemma. Indeed, fix an integer a and observe that as k
runs through a complete residue system mod q/d the numbers n = ac+ kcd run through all
residue mod q for which n ≡ a mod d. Thus∑

n6q
n≡a mod d

χ(n) =
∑
k6q/d

χ(ac+ kcd) = χ(c)
∑
k6q/d

χ(a+ kd) = χ(c)
∑
n6q

n≡a mod d

χ(n).

Since χ(c) 6= 1, we conclude that ∑
n6q

n≡a mod d

χ(n) = 0

as required. �

Gauss sums
Given a Dirichlet character χ mod q, we define the Gauss sum τ(χ) of χ to be

τ(χ) =
∑
a6q

χ(a)e(a/q).

The Gauss sum actually determines many of the additive Fourier coefficients of χ.

Lemma 6.10. Suppose that χ is a Dirichlet character modulo q. If (n, q) = 1 then

χ(n)τ(χ) =

q∑
a=1

χ(a)e(an/q).

Proof. When (n, q) = 1, the map a 7→ an permutes the residue classes modulo q, and hence∑
a6q

χ(a)e(an/q) =
∑
a6q

χ(an−1)e(a/q) = χ(n−1)
∑
a6q

χ(a)e(a/q) = χ(n)τ(χ)

as desired. �



46 ALED WALKER

Life is sweeter when χ is a primitive Dirichlet character.

Lemma 6.11. Suppose that χ is a primitive Dirichlet character modulo q. Then

χ(n)τ(χ) =

q∑
a=1

χ(a)e(an/q)

for all n, and |τ(χ)| = √q.

Proof. We need only consider the case (n, q) > 1, as the coprime case was dealt with in the
previous lemma. Choose m and d so that (m, d) = 1 and m/d = n/q (i.e. write the fraction
n/q in lowest terms). Then by splitting into residue classes modulo d we get∑

a6q

χ(a)e(an/q) =
∑
h6d

e(hm/d)
∑
a6q

a≡h mod d

χ(a).

Since d|q and d < q, the inner sum vanishes by a previous Lemma.
Regarding the size of the Gauss sum, taking absolute values and summing over n one gets

ϕ(q)|τ(χ)|2 =
∑
n6q

|χ(n)|2|τ(χ)|2 =
∑
n6q

∣∣∣∑
a6q

χ(a)e(an/q)
∣∣∣2 =

∑
a,b6q

χ(a)χ(b)
∑
n6q

e((a− b)n/q)

= q
∑
a6q

|χ(a)|2 = qϕ(q).

Hence |τ(q)| = √q. �

A corollary of this result is that the Fourier inversion formula takes a very pleasant form,
namely if χ is a primitive Dirichlet character modulo q then

χ(n) =
1

τ(χ)

∑
a6q

χ(a)e(an/q)

for all n.

Exercise 6.12. Let χ be a Dirichlet character modulo q that is induced by the primitive
character χ∗ modulo d. Then τ(χ) = µ(q/d)χ∗(q/d)τ(χ∗).

I have already said that the special role of real Dirichlet characters will not be embarked
on in this course. However, for your general education, let me state the fundamental theorem
of such characters.

Theorem 6.13. Let d be a fundamental discriminant, i.e. a non-zero integer such that
either d ≡ 1 mod 4 and µ2(d) = 1 or d = 4m where m ≡ 2, 3 mod 4 and µ2(m) = 1. Then
let us define the Kronecker symbol (d· ) to be the function from Z to {0,−1,+1} given on
primes by

•
(
d
p

)
= 0 when p|d;

•
(
d
2

)
= 1 when d ≡ 1 mod 8 and

(
d
2

)
= −1 when d ≡ 5 mod 8;

•
(
d
p

)
is equal to the Legendre symbol for all odd primes;

•
(

d
−1

)
= sgn(d);

and then extended so that ( d
n
) is a totally multiplicative function of n.

Then n 7→ ( d
n
) is a real primitive Dirichlet character of conductor |d|, and moreover all

such primitive Dirichlet characters are of this form.
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7. Lecture 7: Repulsion theorems for Dirichlet characters

Last lecture we didn’t quite have time to state and prove the Polya–Vinogradov inequal-
ity. To do so, let us start by recording a simple (but exceptionally useful!) lemma about
exponential sums.

Lemma 7.1. For all θ ∈ R, ∑
n6N

e(nθ)� min(N, ‖θ‖−1),

where ‖θ‖ is the distance from θ to the nearest integer.

Proof. Explicitly evaluating the geometric series we get∑
n6N

e(nθ) =
e((N + 1)θ)− e(θ)

1− e(θ)
� 1

|1− e(θ)|
� 1

|e(−θ/2)− e(θ/2)|
� 1

| sinπθ|
� 1

‖θ‖

since sin πx > 2x for x ∈ [0, 1/2].
That gives the bound O(‖θ‖−1). The other bound of N comes from the trivial argument∣∣∣∑

n6N

e(nθ)
∣∣∣�∑

n6N

|e(nθ)| � N.

This settles the lemma. �

If χ is a non-principal Dirichlet character to modulus q, by orthogonality of characters we
have that

∑
n6q χ(n) = 0. In particular (by q-periodicity) this implies that

∑
n6N χ(n) 6 q.

However, it turns out that we can do substantially better than this bound.

Theorem 7.2 (Pólya–Vinogradov Theorem). Let χ be a non-principal Dirichlet character
mod q with q > 2. Then, for all N > 1 we have∑

n6N

χ(n)� q1/2 log q.

Proof. Suppose first that χ is a primitive character. Then by Fourier inversion we have∑
n6N

χ(n) =
1

τ(χ)

∑
a6q

χ(a)
∑
n6N

e(an/q).

The inner sum is a geometric series, and we may bound it using the previous lemma. So∑
n6N

χ(n)� 1

|τ(χ)|
∑
a6q−1

‖a/q‖−1 � 1
√
q
· q ·

∑
a6q−1

1

a
� q1/2 log q.

Now let us extend the proof to the general case. Suppose that χ is induced by the primitive
character χ∗ modulo d. We know that d > 2 and χ∗ is non-principal, since χ is non-principal.
Let r be the product of those primes that divide q but not d. Then∑

n6N

χ(n) =
∑
n6N

(n,r)=1

χ∗(n)

=
∑
n6N

χ∗(n)
∑
k|(n,r)

µ(k)

=
∑
k|r

µ(k)
∑
n6N
k|n

χ∗(n)

=
∑
k|r

µ(k)χ∗(k)
∑
n6N/k

χ∗(m).
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We know that the absolute value of the inner sum is� d1/2 log d. Furthermore, the number
of divisors of r is at most O(r1/2) (as can be seen easily, since if ab = r then at least 1 of a
and b is at most r1/2). So ∑

n6N

χ(n)� r1/2d1/2 log d� q1/2 log q,

since r 6 q/d and d 6 q. This settles the theorem. �

The Polya–Vinogradov inequality is a central result in the theory. There are many appli-
cation to the local distribution of arithmetic objects, some of which will be on the examples
sheet. For characters with even order, any improvement would have strong consequences for
the position of the least quadratic non-residue – which seems to be a very difficult problem.
However, for characters of odd order, it turns out that – remarkably – one can improve this
inequality.

Theorem 7.3 (Granville–Soundararajan). Let χ be a Dirichlet character mod q, and let g
be the order of χ. Suppose that g > 3 is odd. Then, for all N > 1 we ave∑

n6N

χ(n)�g q
1/2(log q)1− δg

2
+o(1),

where

δg := 1− g

π
sin
(π
g

)
.

In particular δg > 0.

This theorem, proved in 2005, was the first major unconditional improvement to P–V
since the inequality was first formulated in 1918! It has since been refined by Goldmakher
and Lamzouri–Mangerel, who improved some of the machinery involving mean values of
multiplicative functions in order to get a bound of q(log q)1−δg+o(1). We won’t be able to
get to this result, but, using the tools that we have developed on averages of multiplicative
functions, we will be able to prove the Granville–Soundararajan result.

A final contextual remark: conditional on the Generalised Riemann Hypothesis, Mont-
gomery showed back in the 70s that

∑
n6N χ(n)� q1/2 log log q. This was known to be tight

since the 1930s, when Paley came up with some examples (see examples sheet).

Our proof of Theorem 7.3 will be based on three main devices. One is the logarithmically-
averaged Halasz’s theorem that we introduced in Lecture 2. Another is a ‘major arc, minor
arc’ fourier-analytic principal, familiar to any readers with some background in the circle
method – that will covered next time. For today, we will concern ourselves with the third
principal, namely a repulsion principal for D(χ, ξ;X) when χ and ξ are certain Dirichlet
characters.

We begin with a statement about prime numbers in arithmetic progressions, which we
will use throughout.

Theorem 7.4 (Prime number theorem in APs, harmonic sum). Let y > 2, q 6 (log y)A,
and (a, q) = 1. Then ∑

q6p6y
p≡a mod q

1

p
= (1 + oA(1))

log log y

ϕ(q)
.

When A < 2, the implied constant is effective.

Such a theorem, or one like it, is a common staple of first courses in analytic number
theory. As according to our general policy, we will not provide a proof in these notes. The
reader is invited to consult Davenport for the details. However, the intuition for the result



MULTIPLICATIVE FUNCTIONS 49

is clear enough, namely that the primes are equidistributed across all the residues classes a
modulo q in which one finds infinitely many primes, namely when (a, q) = 1. Note that it is
nonetheless important that we excluded the primes less than q from consideration, otherwise
the sum of the left-hand could potentially be dominated by one large term coming from a
single small prime.

For those readers with a little more background, the issue of effectivity comes as ever from
the possibilities of an L-function L(s, χ) having a real zero very close to s = 1. The class
number formula yields the bound L(1, χd)� |d|−1/2, where χd is a real primitive character
of conductor |d|, and this in turn leads to the effective bound that 1 − β �ε d

−1/2−ε for
all ε > 0. The 2 in this fraction 1/2 leads to the effective range of (log y)2 in the theorem.
Of course we have Siegel’s result that 1 − β �ε d

−ε, but this is ineffective, and leads to
ineffective bounds in the theorem above.

In the applications later on in this section of the course, we will only be considering cases
in which q 6 log y. So, in fact, all the error terms will be effective.

We also need another simple observation about primitive characters.

Lemma 7.5. If χ1 and χ2 are two distinct primitive characters, of conductors q1 and q2 re-
spectively, then we cannot have the character χ1χ2 be the principal character modulo [q1, q2].

Proof. The character χ1 induces a character χ′1 modulo [q1, q2], given by χ′1(n) = χ′(n) if
(n, [q1, q2]) = 1 and χ′1(n) = 0 otherwise. Similarly the character χ2 induces a character
χ′2 modulo [q1, q2]. We find that χ′1 6= χ′2, since every character is induced by a unique
primitive character. But this means directly that χ′1χ

′
2 is non-principal, and hence that

χ1χ2 is non-principal. �

Now let us use Theorem 7.4 to prove our first repulsion result for Dirichlet characters.

Lemma 7.6 (Successive repulsion). Let χ mod q be a primitive character and y > 10. Let
us enumerate all the primitive characters {ψ1, . . . , ψA} with conductor at most log y so that
the distances D(χ, ψj; y) are arranged in ascending order. Then for each 1 6 j 6 A we have

D(χ, ψj; y)2 >
(

1− 1√
j

+ o(1)
)

log log y

as y →∞.

In words, this lemma is saying that χ can only possibly pretend to be a single other
primitive character with small conductor, namely ψ1. All other primitive characters ψj are
bounded away from χ.

Proof. Note that

D(χ, ψj; y)2 >
1

j

j∑
k=1

D(χ, ψk; y)2

=
1

j

∑
p6y

1

p

j∑
k=1

(1−<χ(p)ψk(p))

>
1

j

∑
p6y

1

p

(
j −

∣∣∣ j∑
k=1

ψk(p)
∣∣∣)

= log log y +O(1)− 1

j

∑
p6y

1

p

∣∣∣ j∑
k=1

ψk(p)
∣∣∣.



50 ALED WALKER

We will bound the second term above. Indeed, by the Cauchy–Schwarz inequalty we have
that (∑

p6y

1

p

∣∣∣ j∑
k=1

ψk(p)
∣∣∣)2

6
(∑
p6y

1

p

)(∑
p6y

1

p

∣∣∣ j∑
k=1

ψk(p)
∣∣∣2).

The first term on the right-hand side is equal to log log y+O(1), which is (1+o(1)) log log y.
Expanding out the square in the second term, writing mk for the conductor of ψk, we see
that the second term is ∑

p6y

1

p

(
j +

∑
16k,`6j
k 6=`

ψk(p)ψ`(p)
)
,

which equals

= j(1 + o(1)) log log y +
∑

16k,`6j
k 6=`

∑
a6[mk,m`]

(a,mk)=(a,m`)=1

(ψkψ`)(a)
∑
p6y

p≡a mod [mk,m`]

1

p

= j(1 + o(1)) log log y +
∑

16k,`6j
k 6=`

∑
a6[mk,m`]

(a,mk)=(a,m`)=1

(ψkψ`)(a)
∑

[mk,m`]6p6y
p≡a mod [mk,m`]

1

p
+O(j2 log3 y)

= j(1 + o(1)) log log y +
∑

16k,`6j
k 6=`

∑
a6[mk,m`]

(a,mk)=(a,m`)=1

(ψkψ`)(a)(1 + o(1))
log log y

ϕ([mk,m`])
+O(j2 log3 y)

by the prime number theorem in arithmetic progressions as given earlier. Here log3 y :=
log log log y. Since ψkψ` is a non-principal character modulo [mk,m`] (by our previous
Lemma), we have that ∑

a6[mk,m`]
(a,mk)=(a,m`)=1

(ψkψ`)(a) = 0.

Therefore we have that the total contribution in the above sum is

j log log y + j2o(log log y).

Hence

D(χ, ψj; y)2 > (1 + o(1)) log log y − 1

j
((1 + o(1)) log log y)1/2(j log log y + j2o(log log y))1/2

> (1 + o(1)) log log y − 1

j
((1 + o(1)) log log y)1/2(j1/2(log log y)1/2 + jo((log log y)1/2))

>
(

1− 1√
j

+ o(1)
)

log log y

as claimed. �

Note that for any Dirichlet character χ we have χ(−1) ∈ {−1, 1}, since χ(−1)2 =
χ((−1)2) = χ(1) = 1. We call a character χ even if χ(−1) = 1, and odd if χ(−1) = −1. The
second repulsion lemma shows that, at least in the case of odd order characters, a character
χ cannot strongly pretend to be a character with small conductor of the opposite parity.

Lemma 7.7. Let χ mod q be a primitive character of odd order g, and let y > 10. Suppose
that ξ mod m is a character such that χ(−1)ξ(−1) = −1. If m 6 (log y)A then

D(χ, ξ; y)2 > (δg + oA(1)) log log y,

where δg = 1 − (g/π) sin(π/g) as in the main theorem of this section, and where the error
term is effective if A < 2.
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Proof. Since χ has odd order, χ(−1) = 1. Thus ξ(−1) = −1, and so ξ must have even order
k > 2, say. We have

D(χ, ξ; y)2 =
∑
p6y

1−<(χ(p)ξ(p))

p

>
∑

− k
2
<`6 k

2

( ∑
m6p6y

ξ(p)=e(`/k)

1

p

)
min
zg=0,1

(1−<(ze(−`/k))),

by splitting the sum according to the values of ξ(p), and assuming that χ(p) = z is always
the worst-case z.

Note that

min
zg=0,1

(1−<(ze(−`/k))) > min
h∈Z

(1−<
(
e
(h
g
− `

k

))
= 1−max

h∈Z
cos
(2π

g

(
h− `g

k

))
= 1− cos

(2π

g

∥∥∥`g
k

∥∥∥),
where ‖θ‖ denotes the distance from θ to the nearest integer, as before. From the prime
number theorem in arithmetic progressions we get∑

m6p6y
ξ(p)=e(`/k)

1

p
=

∑
r6m

(r,m)=1
ξ(r)=e(`/k)

∑
m6p6y

p≡r mod m

1

p

=
∑
r6m

(r,m)=1
ξ(r)=e(`/k)

(1 + oA(1))
log log y

ϕ(m)

= (1 + oA(1))
log log y

k
.

Write in lowest terms g/k = g∗/k∗ /∈ Z, since g and k have opposite parity. Reindexing
`, we have

D(χ, ξ; y)2 > (1 + oA(1))
log log y

k

k

k∗

∑
−k∗/2<`6k∗/2

(
1− cos

2π`

gk∗

)
.

Summing the cosine series, using critically the fact that k∗ is even so that we may write
−k∗/2 + 1 as the least value of the summation variable `, we get

D(χ, ξ; y)2 > (1 + oA(1))
(

1− sin(π/g)

k∗ tan(π/gk∗)

)
log log y.

Since k∗ tan(π/gk∗) > π/g we have

D(χ, ξ; y)2 > (1 + o(1))
(

1− g

π
sin
(π
g

))
log log y = (1 + oA(1))δg log log y

as required. �

Next time we will proceed to the Fourier analytic elements of the proof.
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8. Lecture 8: Major arcs and minor arcs

Last time we studied the aspects of the proof of Theorem 7.3 that were concerned with
the Granville–Soundararajan distance. Today, we will study the Fourier analytic aspects.
For reasons of time, we will not be able to prove quite all the results that we need in full
generality or precision. Rather, we will provide short and (relatively) clean proofs of similar
statements, which are slightly weaker than we need.

Theorem 8.1 (Polya’s Fourier expansion). If χ is a primitive non-principal character mod
q, then we have the Fourier expansion∑

n6N

χ(n) =
τ(χ)

2πi

∑
k∈Z

16|k|6K

χ(k)

k

(
1− e

(
− kN

q

))
+O

(
1 +

q log q

K

)
.

We won’t prove this result with the error term given here. To do so would entail us taking a
small diversion into the realm of ‘quantitative Fourier analysis for discontinuous functions’,
which I want to avoid in this primarily number-theoretic course. The key (qualitative)
lemma is the following, which should be broadly familiar from undergraduate analysis.

Lemma 8.2. Let f ∈ L1(R/Z) be a piecewise continuously differentiable function. Then
for all α ∈ R/Z we have

f(α+) + f(α−)

2
= lim

K→∞

∑
k∈Z
|k|6K

f̂(k),

where f(α±) are the upper and lower limits of f at α, and where

f̂(k) =

1∫
0

f(α)e(−kα) dα.

I hope that this is a familiar idea, namely that Fourier series converge to the mid-point of a
jump discontinuity. For a quantitative version of this fact, see Appendix D of Montgomery-
Vaughan.

Proof of Theorem 8.1, main term. Consider the function f : R/Z −→ C given by

f(α) :=
∑
n6αq

χ(n).

This function is well-defined since
∑

n6q χ(n) = 0, and it is piecewise continuously differ-

entiable (in fact it is piecewise constant, and has ϕ(q) jump discontinuities). Then, for
k 6= 0,

f̂(k) =

1∫
0

∑
n6αq

χ(n)e(−kα) dα

=
∑
n6q

χ(n)

1∫
n/q

e(−kα) dα

=
∑
n6q

χ(n)
(
− 1

2πik

(
1− e

(
− kn

q

)))
=

1

2πik

∑
n6q

χ(n)e
(
− kn

q

)
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=
1

2πik
χ(−k)τ(χ)

since χ is primitive. Similarly we derive

f̂(0) = −1

q

∑
n6q

nχ(n).

One may derive an alternative expression for this 0th Fourier coefficient. Indeed, the point
0 is a point of continuity for f , so from the lemma above we get

0 = f(0) = lim
K→∞

∑
k∈Z
|k|6K

f̂(k) = f̂(0) + lim
K→∞

∑
k∈Z

16|k|6K

f̂(k)

= −1

q

∑
n6q

nχ(n) + lim
K→∞

∑
k∈Z

16|k|6K

1

2πik
χ(−k)τ(χ).

Putting everything together, and using the preceding lemma again, when N/q is a point
of continuity of f we have∑

n6N

χ(n) = f(N/q) =
τ(χ)

2πi
lim
K→∞

∑
k∈Z

16|k|6K

χ(−k)

k

(
e
(kN
q

)
− 1
)

=
τ(χ)

2πi
lim
K→∞

∑
k∈Z

16|k|6K

χ(k)

k

(
1− e

(−kN
q

))
after relabelling k with −k. This gives the correct expression for the main term of the
Fourier series claimed in the theorem. The error term comes from a quantitative version of
the above argument. �

We will apply this theorem with K = q, deriving∑
n6N

χ(n) =
τ(χ)

2πi

∑
k∈Z

16|k|6q

χ(k)

k

(
1− e

(−kN
q

))
+O(log q).

Combining the contributions with k and −k, and using the multiplicativity of χ, we end up
with∑
n6N

χ(n) =
τ(χ)

2πi
(1−χ(−1))

∑
k6q

χ(k)

k
−τ(χ)

2πi

∑
k6q

χ(k)

k

(
e
(
−kN

q

)
−χ(−1)e

(kN
q

))
+O(1+log q).

The first term here
τ(χ)

2πi
(1− χ(−1))

∑
k6q

χ(k)

k

could be related to L(1, χ), but we won’t need to do this as for us this term will immediately
vanish. Indeed, specialising to the case were χ has odd order g, we know that χ(−1) = 1
and so the term vanishes and we are left with∑

n6N

χ(n) = −τ(χ)

2πi

∑
k6q

χ(k)

k

(
e
(
− kN

q

)
− e
(kN
q

))
+O(1 + log q).

Since Theorem 7.3 can easily be reduced to case when χ is primitive – as in the proof of
the Polya–Vinogradov inequality – we have reduced matters to the following theorem:
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Theorem 8.3. Let χ mod q be a primitive non-principal Dirichlet character, with odd order
g > 3. Then ∑

k6q

χ(k)

k

(
e
(
− kN

q

)
− e
(kN
q

))
� (log q)1−δg/2+o(1),

where δg = 1− g
π

sin(π
g
).

Another observation is that δg is a decreasing function of g, and hence (log q)1−δg/2 >
(log q)1−δ3/2 > (log q)0.913.... So any extra error terms of (log q)c with c < 0.913 can be
absorbed.

This is the end of the first part of the lecture. Note that the Fourier expansion above is
also adequate for proving the Polya–Vinogradov inequality, since the trivial bound on the
summation is O(log q), and as ever the Gauss sum satisfies |τ(χ)| =

√
q. But the sum in

the statement of Theorem 8.3 enjoys some extra explicit structure – indeed, it is very close
to a logarithmic average of χ, albeit twisted by an additive character. For the rest of this
lecture, we discuss how to remove the additive character.

It turns out (as often happens!) that the behaviour of the sum∑
k6q

χ(k)

k
e
(kN
q

)
is determined by the quality of rational approximations to the phase N/q.

A brief diversion concerning major arcs and minor arcs
In a great many natural situations in analytic number theory, one is faced with estimating

the the fourier coefficients of some arithmetic sequence, for example the exponential sum∑
n6N

e(nkθ)

for some fixed natural number k, which comes up in the calculations involved in ‘Waring’s
problem’, i.e. when writing an integer as a sum of perfect kth powers. Below is a graph of
the absolute value of this sum as θ ranges from 0 to 1, in the case k = 2:



MULTIPLICATIVE FUNCTIONS 55

Notice how most of the time the exponential sum is very small, but very occasionally
it is large. These points are when θ ≈ b/r when (b, r) = 1 and r is small. (Not all such
points; witness the fact that there is no peak at θ = 1/2). We call these small regions
around fraction b/r to be ‘major arcs’, and everything else in [0, 1) to be a ‘minor arc’. (The
terminology dates back to Hardy–Littlewood, and comes from the point of view in which
the phase e(nkθ) is really a point on the unit circle, and one cuts up the circle into various
arcs.)

The minor arcs tend to be the ‘hard’ ones in applications, so for ease of exposition we’ll
deal with those second. [Of course in actual research you tend to tackle the minor arcs first,
as one feels that once the minor arcs have been controlled then everything else should fall
into place.] To estimate matters in the major arc case, i.e. to estimate

∑
n6N e(n

kb/r) when
r is small, it often suffices to split this sum over n into the different residue classes modulo r.
On these residue classes the phase e(nkb/r) is constant, and so doesn’t affect the sum, and
one can conclude by counting the number of kth powers in arithmetic progressions modulo
r.

The range over which one has good control of the arithmetic behaviour in arithmetic
progressions modulo r is what determines how large r can be taken, i.e. how many major
arcs you can take.

Let’s put this method to the test in our context.

Lemma 8.4. Let χ mod q be a primitive non-principal Dirichlet character, with odd order
g > 3, and let b ∈ Z and r ∈ N with (b, r) = 1, r 6 (log q)1/3. Then

max
K6q

∣∣∣∑
k6K

χ(k)

k

(
e
(
− kb

r

)
− e
(kb
r

))∣∣∣�g (log q)1−δg/2+o(1).

Proof. We study ∑
k6K

χ(k)

k
e
(kb
r

)
.

Splitting the sum according to the greatest common divisor of k and r,

∑
k6K

χ(k)

k
e
(kb
r

)
=
∑
d|r

∑
k6K

(k,r)=d

χ(k)

k
e
(kb/d
r/d

)

=
∑
d|r

χ(d)

d

∑
k6K/d

(k,r/d)=1

χ(k)

k
e
( kb
r/d

)
. (4)

Since (kb, r/d) = 1 we get

e
( kb
r/d

)
=

1

ϕ(r/d)

∑
a mod r/d
(a,r/d)=1

e
( a

r/d

) ∑
ψ mod r/d

ψ(a−1kb)

=
1

ϕ(r/d)

∑
a mod r/d

e
( a

r/d

) ∑
ψ mod r/d

ψ(a)ψ(kb),

using the fact that for all x mod r/d we have

1x=1 =
1

ϕ(r/d)

∑
ψ mod r/d

ψ(x).
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By swapping the summations over a and ψ, we get

e
( kb
r/d

)
=

1

ϕ(r/d)

∑
ψ mod r/d

ψ(kb)
∑

a mod r/d

e
( a

r/d

)
ψ(a)

=
1

ϕ(r/d)

∑
ψ mod r/d

ψ(kb)τ(ψ)

by the definition of the Gauss sum τ(ψ). Therefore

∑
k6K/d

(k,r/d)=1

χ(k)

k
e
( kb
r/d

)
=

1

ϕ(r/d)

∑
ψ mod r/d

τ(ψ)ψ(b)
∑
k6K/d

(χψ)(k)

k
. (5)

Recall the logarithmic Halasz theorem in Lecture 2/3 (Lemma 2.12) that stated that if
f ∈M0 then

MX,log(f)� exp
(
− 1

2

∑
p6X

1−<f(p)

p

)
,

provided X > 2. Therefore∣∣∣ ∑
k6K/d

(χψ)(k)

k

∣∣∣� 1 + (logK/d) exp(−1

2
D(χ, ψ;K/d)2)

� 1 + (logK/d) exp(−1

2
D(χ, ψ; q)2 +

∑
K/d<p6q

1

p
)

� 1 + (log q) exp(−1

2
D(χ, ψ; q)2),

so we are in a position to start using our results on Dirichlet character repulsion.
Let ξ mod m denote the primitive Dirichlet character with conductor below (log q)1/3

which minimises the distance D(χ, ξ; q) amongst all such characters (if there is a tie, pick
one). We split collection of characters ψ in the sum (5) according to whether ψ is induced
by ξ or not.

Let ψ mod r/d be induced by the primitive character ψ∗. Since ψ and ψ∗ potentially
differ only at primes p|r/d, we conclude that D(χ, ψ; q)2 = D(χ, ψ∗; q)2 + O(log log log q),
since r 6 (log q)1/3. By appealing to Lemma 3.8, we observe that if ψ∗ 6= ξ then

D(χ, ψ; q)2 > (1− 1/
√

2 + o(1)) log log q,

and further there are at most O(1) characters ψ mod r/d for which D(χ, ψ; q)2 6 2
3

log log q.

Since |τ(ψ)| 6
√
r/d we conclude that the contribution from all such characters is

6
1

ϕ(r/d)

∑
ψ mod r/d

ψ not induced by ξ

|τ(ψ)|
∣∣∣ ∑
k6K/d

(χψ)(k)

k

∣∣∣
�
√
r/d

ϕ(r/d)
(log q)

1
2

+ 1
2
√
2

+o(1)
+
√
r/d(log q)2/3.

Summing over all d|r we end up with a total contribution in equation (4) of

� (log q)
1
2

+ 1
2
√

2
+o(1)

+
√
r(log q)

2
3

+o(1) � (log q)0.9,

which (as we’ve already discussed) may be absorbed.
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Now let us consider the overall contribution from characters ψ that are induced by ξ. If
m - r/d then there are no such characters ψ. By using the Gauss-sum formula from Exercise
6.12, we obtain a contribution of

ξ(b)τ(ξ)
∑
d|r/m

χ(d)

dϕ(r/d)
µ
( r

dm

)
ξ
( r

dm

) ∑
k6K/d

(χψ)(k)

k
,

where ψ in this sum is assumed to be the unique character mod r/d that is induced by ξ.
Now we combine this term with the contribution from −b, getting an overall term of

(1− ξ(−1))ξ(b)τ(ξ)
∑
d|r/m

χ(d)

dϕ(r/d)
µ
( r

dm

)
ξ
( r

dm

) ∑
k6K/d

(χψ)(k)

k
.

This vanishes unless ξ(−1) = −1, so for all ψ induced by ξ we have χ(−1)ψ(−1) =
χ(−1)ξ(−1) = −1. Applying the logarithmic Halasz theorem again (Lemma 2.12), we
get a contribution of

�
√
m

ϕ(m)
(log q)o(1)(1 + log q exp(−max

ψ

1

2
D(χ, ψ; q)2),

where the max is taken over all the ψ induced by ξ, with modulus dividing r. Using the
other repulsion lemma (namely Lemma 7.7, which is valid since the modulus of ψ is at most
(log q)1/3 and χ(−1)ψ(−1) = −1, we have an overall upper bound of

�
√
m

ϕ(m)
(log q)1−δg/2+o(1) � (log q)1−δg/2+o(1),

which gives the lemma. �

This settles Theorem 8.3 in the case where N/q may be reduced a fraction b/r with small
denominator. Next lecture we will need to strengthen this result to cover the cases in which
N/q ≈ b/r, rather than being exactly equal, but that will be possible.

Our final remaining large task is to settle Theorem 8.3 when N/q is not well-approximated
by such a fraction b/r, in other words the ‘minor arc’ case.

Minor arcs and the principal of bilinear sums
The study and estimation of bilinear sums is an enormous area of analytic number theory.

In this course we will only see a tiny aspect of the power of these techniques: the interested
reader should look into Vaughan’s identity, Heath-Brown’s identity, Iwaniec’s work on the
bilinear form of the error term in the linear sieve, the large sieve, the Bombieri–Vinogradov
theorem, etc. etc. etc.

Consider the sum ∑
M<m62M
N<n62N

αmβng(mn),

where αm and βn are arbitrary coefficients that satisfy |αm| 6 1 and |βn| 6 1 for all m,n, and
|g(mn)| 6 1 for all m,n. The trivial bound on such a sum would be MN , and indeed this
bound could be achieved if g is completely multiplicative say, since then the sum factorises
as ( ∑

M<m62M

αmg(m)
)( ∑

N<n62N

βng(n)
)
,

and we get no cancellation if we choose the weights αm = g(m) and βn = g(n). However,
if g does not exhibit multiplicative structure, then one can sometimes do better, even for
completely general weights αm, βn.
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Note: there is a somewhat baroque terminology surrounding the theory of bilinear sums.
A sum of the form given here is sometimes called a ‘Type II’ sum. If one of the weights
αm satisfies αm ≡ 1, or more generally if αm is a ‘nice’ function of m (e.g. smooth, or
αm = logm), such a sum is sometimes called a ‘Type I’ sum.

Note: One can think of such a bound in terms of the spectral norm of an M -by-N matrix
whose coefficients are given by g(mn).

We will be interested in Type II sums of the form∑
M<m62M
N<n62N

αmβne(nmθ).

Clearly if θ = 0 then we do not except to see any cancellation in the general case, as the
weight function is constant 1, and therefore multiplicative. Similarly, if θ = b/r with r small
then by splitting into arithmetic progressions modulo r we can split the sum into a small
number of multiplicative pieces, so again we shouldn’t expect a great deal of cancellation
in general. However, if r is not so small then we may achieve a saving. Next time, we will
prove the following bound.

Lemma 8.5 (Type II sum bound). Let θ ∈ R. Suppose that there exist b ∈ Z and r ∈ N
with (b, r) = 1 for which

|θ − b

r
| 6 1

r2
.

Then, for any coefficients αm, βn ∈ C with |αm|, |βn| 6 1 we have∑
M<m62M
N<n62N

αmβne(nmθ)�MNr−1/2 +M1/2N(log r)1/2 +MN1/2 +M1/2N1/2r1/2(log r)1/2.

Compare this to the trivial bound of MN . We win if r is neither too small nor too large,
and if neither M nor N is too small.

9. Lecture 9: Finishing minor arcs and improving Polya–Vinogradov

Proof. We have∣∣∣ ∑
M<m62M
N<n62N

αmβne(mnθ)
∣∣∣2 6M

∣∣∣ ∑
M<m62M

∑
N<n162N
N<n262N

βn1βn2e(m(n1 − n2)θ)
∣∣∣

6M
∑

N<n162N
N<n262N

∣∣∣ ∑
M<m62M

e(m(n1 − n2)θ)
∣∣∣

6M
∑

N<n162N
N<n262N

min(M, ‖(n1 − n2)θ‖−1)

= M
∑

−N+16`6N−1

(N − |`|) min(M, ‖`θ‖−1)

6MN
∑

−N+16`6N−1

min(M, ‖`θ‖−1).

Now, split the range of ` summation into O(N
r

+ 1) ranges of length at most r. Observe
that for any `0 we have∑

`06`6`0+r−1

min(M, ‖`θ‖−1) =
∑

06k6r−1

min(M, ‖`0θ + kθ‖−1)
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=
∑

06k6r−1

min(M, ‖`0θ +
kb

r
+O(1/r)‖−1).

Since (b, r) = 1 we have that kb ranges through a complete set of residues modulo r.
Therefore at most O(1) of the terms k satisfy ‖θ`0 + kb

r
+ O(1/r)‖ 6 1/r. Therefore the

previous sum is

�M +
∑

16|k|6r/2

(k mod r

r

)−1

�M + r log r.

Putting it all together we get an exponential sum bound of

�MN(
N

r
+ 1)(M + r log r),

which is

� M2N2

r
+MN2 log r +M2N +MNr log r.

Taking square-roots gives the lemma. �

We can apply this Type II bound to control the exponential sum of a multiplicative
function, using a similar decomposition trick to the one we used in the proof of Halasz’s
theorem.

Lemma 9.1. Let f ∈ M0 be a multiplicative function. Let θ ∈ R, and choose b ∈ Z and
r ∈ N with (b, r) = 1 and ∣∣∣θ − b

r

∣∣∣ 6 1

r2
.

Then for all X > 2 we have∑
n6X

f(n)e(nθ)� X log logX

(logX)1/2
+

X

r1/2
+
X(log r)1/2

(logX)100
+X1/2r1/2(log r)1/2

and ∑
n6X

f(n)

n
e(nθ)� (logX)1/2+o(1) +

logX

r1/2
+ (log logX)(log r)1/2 + log r.

Furthermore,∑
r6n6X

f(n)

n
e(nθ)� (logX)1/2+o(1) +

logX

r1/2
+ (log logX)(log r)1/2 + (log r)1/2.

The bounds here are reasonably disgusting, in part owing to the fact that we have sought
the simplest proof, rather than the cleanest final statement. To make sense of them, as
always one should consider the bounds in the context of the trivial upper bounds of X and
logX respectively. In the first case, if r is a small power of logX (e.g. r ≈ (logX)1/3) then
we will save a small power of logX over the trivial bound.

Montgomery–Vaughan proved an essentially optimal version of the first case of this lemma,
in which the X(log logX)(logX)−1/2 term is replaced by a X(logX)−1 term. Note that this
bound is unimprovable, at least in the case of general 1-bounded multiplicative functions,
since potentially it could be that the multiplicative function f satisfies f(p) = e(−pθ) for
all primes p in the range X/2 < p 6 X, and f(pk) = 0 otherwise.

Proof. Let ε > 0 to be chosen later and, in a similar move to the one we used in the proof
of Halasz’s theorem, we write

fsmall(n) =

{
f(n) if p|n⇒ p 6 Xε

0 otherwise
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and

flarge(n) =

{
f(n) if n ∈ [2, X] and p|n⇒ p > Xε

0 otherwise.

Let fsplit = fsmall ? flarge. Then we know that∑
n6X

f(n)e(nθ) =
∑
n6X

fsplit(n)e(nθ) +O(εX)

=
∑
ab6X

fsmall(a)flarge(b)e(abθ) +O(εX).

By the preceding lemma, we have that for any M,N ,∑
M<a62M
N6b<2N

fsmall(a)flarge(b)e(abθ)

�MNr−1/2 +M1/2N(log r)1/2 +MN1/2 +M1/2N1/2r1/2(log r)1/2.

So it remains to split up the summation range ab 6 X into suitable rectangles {M <
a 6 2M, N < b 6 2N}, together with a small error. From the limited support of flarge we
can assume that b > Xε. To that end, let I denote the greatest natural number i for which
2iXε 6 X(logX)−100. Now, from the preceding lemma, for any i, j > 0 we have∑

2iXε<b62i+1Xε

flarge(b)
∑

2j<a6min(2j+1,X/b)

fsmall(a)e(abθ)

� Xε2i+jr−
1
2 + 2i+

j
2Xε(log r)

1
2 + 2

i
2

+jX
ε
2 + 2

i+j
2 X

ε
2 r

1
2 (log r)

1
2 .

(Note that we can treat an incomplete interval 2j < a 6 X/b like a dyadic interval 2j < a 6
2j+1 simply by extending the weight function to be 0 on the rest of the range X/b < a 6
2j+1.)

Summing over all j > 0 such that 2j 6 X/(2i+1Xε) and over all i in the range 0 6 i 6 I,
we end up with a bound of

Xr−1/2 +X(logX)−100(log r)1/2 +X1−ε/2 +X1/2r1/2(log r)1/2.

Note that for all such i and j, and with a and b in the dyadic summation ranges given above,
ab 6 X.

What remains is to bound the contribution from the outstanding pairs a, b with ab 6 X
that we haven’t accounted for yet, namely those pairs for which b > X(logX)−100. In this
instance we can use the Brun–Titchmarsh theorem to deduce that∑

X(logX)−100/2<b6X

|flarge(b)|
∑
a6X/b

|fsmall(a)||e(abθ)| �
∑

X(logX)−100/2<b6X
p|b⇒p>Xε

X

b

�
200 log logX∑

k=0

∑
2−k+1X<b62−kX

p|b⇒p>Xε

X

b

� X log logX(logXε)−1

� X log logX

ε logX
.

So all in all, we have a bound of

� εX +
X log logX

ε logX
+

X

r1/2
+
X(log r)1/2

(logX)100
+X1−ε/2 +X1/2r1/2(log r)1/2.
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We can always absorb the X1−ε/2 term, and so, picking ε = (logX)−1/2, we get a bound of

� X log logX

(logX)1/2
+

X

r1/2
+
X(log r)1/2

(logX)100
+X1/2r1/2(log r)1/2

as claimed in the first part.
To prove the second part, we apply partial summation. Then

∑
n6X

f(n)

n
e(nθ) =

∑
n<r

f(n)

n
e(nθ) +

∑
r6n6X

f(n)

n
e(nθ)

6 (log r) +
1

X

∑
r6n6X

f(n)e(nθ) +

X∫
r

∑
r6n6t f(n)e(nθ)

t2
dt

� 1 + log r +

X∫
r

log log t

t(log t)1/2
+

1

tr1/2
+

(log r)1/2

t(log t)100
+
r1/2(log r)1/2

t3/2
dt

� log r + (logX)1/2+o(1) +
logX

r1/2
+ log logX(log r)1/2 + (log r)1/2

� log r + (logX)1/2+o(1) +
logX

r1/2
+ log logX(log r)1/2

as claimed. �

Proof of Theorem 8.3
Now, finally, we can enact the major arc/minor arc distinction promised from last lecture,

and prove Theorem 8.3. It is not supposed to be obvious why the thresholds s and S work
well in the analysis to follow. When trying to come up with such arguments yourself, you
should run the argument first with arbitrary parameters, and then towards the end of this
process you will get a feel for what a suitable choice will be (there is certainly some flexibility
in the parameters).

Let s = (log q)1/3 and S = bexp((log q)5/6)c. Let us recall a foundational result in the
theory of diophantine approximation.

Lemma 9.2 (Dirichlet’s approximation theorem). For all θ ∈ R, there exists b ∈ Z and
r ∈ N for which (b, r) = 1, r 6 S and ∣∣∣θ − b

r

∣∣∣ < 1

rS
.

Proof. Consider 0, θ, 2θ, . . . , Sθ mod 1. By the pigeonhole principle, there exists distinct
r1, r2 in the range 0 6 r1, r2 6 S and some i ∈ Z>0 with 0 6 i 6 S − 1 for which

r1θ, r2θ mod 1 ∈ [i/S, (i+ 1)/S).

Then ‖ |r1 − r2|θ ‖ = ‖r1θ − r2θ‖ < 1/S. Letting r = |r1 − r2| and letting b be the nearest
integer to rθ, we conclude that

|rθ − b| < 1

S
.

This is nearly as required, except that b and r might have a non-trivial common factor.
However, if b/r = b∗/r∗ in lowest terms, we have∣∣∣θ − b∗

r∗

∣∣∣ =
∣∣∣θ − b

r

∣∣∣ < 1

rS
6

1

r∗S
.

This settles the lemma. �
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We say that θ ∈ [0, 1] is in a minor arc if for all r 6 S for which there exists a b ∈ Z
with (b, r) = 1 and |θ−b/r| 6 1/rS we have r > s. Otherwise we say that θ is in a major arc.

Minor arc case
Suppose that N/q is in a minor arc. By Dirichlet’s approximation theorem we can find

some r 6 S for which there exists a b ∈ Z with (b, r) = 1 and |N/q − b/r| 6 1/rS 6 1/r2.
By the minor arc assumption, s < r 6 S. Therefore, by applying Lemma 9.1 to the phase
θ := N/q, we have that∑

k6q

χ(k)

k
e
(kN
q

)
� log r + (log q)1/2+o(1) +

log q

r1/2
+

log log q

(log r)1/2

� logS + (log q)1/2+o(1) +
log q

s1/2
+

log log q

(log s)1/2

� (log q)5/6+o(1) � (log q)0.9,

so may be absorbed.

Major arc case
Now suppose that N/q is in a major arc. Again we can find some r 6 S for which there

exists a b ∈ Z with (b, r) = 1 and |N/q− b/r| 6 1/rS 6 1/r2. By the major arc assumption,
r 6 s. Following on from the work of last lecture, we will be done after the next lemma:

Lemma 9.3 (Major arc approximations). Under the major arc assumptions, we have∑
k6q

χ(k)

k
e
(kN
q

)
=
∑
k6K

χ(k)

k
e
(kb
r

)
+O((log q)1/2+o(1)),

where K = min(q, | rN
q
− b|−1).

Proof. If K = q, then the lemma is immediate, as∣∣∣∑
k6q

χ(k)

k
e
(kN
q

)
−
∑
k6q

χ(k)

k
e
(kb
r

)∣∣∣ 6∑
k6q

1

k

∣∣∣e(kN
q

)
− e
(kb
r

)∣∣∣
�
∑
k6q

1

k
k
∣∣∣N
q
− b

r

∣∣∣
6
∑
k6q

1

rq
6 1.

Otherwise we have K = | rN
q
− b|−1 > S. Then by the same argument as above we have∑

k6K

χ(k)

k
e
(kN
q

)
=
∑
k6K

χ(k)

k
e
(kb
r

)
+O(1),

so it remains to show that ∑
K<k6q

χ(k)

k
e
(kN
q

)
= O((log q)1/2+o(1)).

By Dirichlet’s theorm again, we may pick r1 6 K and find a b1 with (b1, r1) = 1 and
|N
q
− b1

r1
| < 1/r1K. Then we cannot have b/r = b1/r1, since then we would have 1/rK =

|N
q
− b

r
| = |N

q
− b1

r1
| < 1/r1K, contradicting the fact that r = r1. So

1

rr1

6
∣∣∣ b
r
− b1

r1

∣∣∣ 6 ∣∣∣ b
r
− N

q

∣∣∣+
∣∣∣N
q
− b1

r1

∣∣∣ 6 1

rK
+

1

r1K
,
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and this implies that K 6 r1 + r 6 r1 + s, so K − s 6 r1 6 K. Since K > S, we have
K/2 6 r1 6 K.

Thus, applying Lemma 9.1 with the approximation b1/r1, we get∑
K<k6q

χ(k)

k
e
(kN
q

)
�

∑
r16k6q

χ(k)

k
e
(kN
q

)
� (log q)1/2+o(1) +

log q

r
1/2
1

+
log log q

(log r)1/2
+ (log r1)1/2

� (log q)1/2+o(1) +
log q

K1/2
+

log log q

(logK)1/2
+ (logK)1/2

� (log q)1/2+o(1).

This settles the lemma. �

Since 1/2 < 0.9 we can absorb this O((log q)1/2+o(1)) error term. Finally, we have already
established in Lemma 8.4 that

max
K6q

∣∣∣∑
k6K

χ(k)

k

(
e
(
− kb

r

)
− e
(kb
r

))∣∣∣� (log q)1−δg/2+o(1).

Putting all the cases together, we conclude Theorem 8.3, and hence finally we have prove
Theorem 7.3 of Granville and Soundararajan.
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10. Almost-all short intervals

Introduction
After some intense and detailed lectures last week, and following the general feedback that

has been given to the faculty about Part III courses, I have (slightly) changed my plan for the
remaining lectures of this course. We will still cover the intended topics, but not in equal
detail. Rather, I will spend 5-6 of the remaining lectures describing the groundbreaking
work of Matomäki–Radziwi l l on the averages of multiplicative functions in short intervals.
The final 1-2 lectures will be spent on sketching the main ideas from Tao’s (equally ground-
breaking) work on correlations of multiplicative functions – discussing the main ideas but
not giving all details.

Without further ado, here is the spectacular theorem that we will be addressing for the
next three weeks or so.

Theorem 10.1 (Matomäki–Radziwi l l 2015). Let f ∈ M0 be a real-valued multiplicative
function, and let X be an asymptotic parameter tending to infinity. Let H = H(X) be a
function with H →∞ as X →∞ and H(X) 6 X. Then, for all but o(X) natural numbers
x ∈ [X, 2X) ∣∣∣ 1

H

∑
x<n6x+H

f(n)− 1

X

∑
X<n62X

f(n)
∣∣∣ = o(1).

The error term is independent of the choice of f .

In words, in ‘almost-all’ short intervals, the short-average of f agrees asymptotically with
the long average of f .

There is an equivalent version with finite thresholds – we leave the proof of equivalence
as an exercise.

Theorem 10.2. Let ε > 0. Then there exist positive parameters X0(ε) and H0(ε), depending
only on ε, for which the following is true: if f ∈M0 is a real-valued multiplicative function,
then for all X > X0(ε) and for all H in the range H0(ε) 6 H 6 X we have∣∣∣ 1

H

∑
x<n6x+H

f(n)− 1

X

∑
X<n62X

f(n)
∣∣∣ 6 ε

for at least (1− ε)X integer values of x ∈ [X, 2X).

As you might expect, Matomäki–Radziwi l l proved an explicit quantitative version of
this theorem, with explicit dependence of the o(X) and o(1) terms on X and on H(X).
However, in keeping with our general philosophy of this course, we are concerned more
with qualitative mean-value results than quantitative results. The restriction to real-valued
multiplicative functions is also not entirely necessary, and can be replaced by the assumption
that f ∈M0 is not nit pretentious for any t 6= 0. It would be a very good way of testing your
understanding of the material to go through the lectured proof for real-valued multiplicative
functions and adapt it to non-pretentious complex-valued multiplicative functions.

As I mentioned in Lecture 1, this result is wildly stronger than anything that had been
previously known, even assuming the Riemann hypothesis. It is also stronger than any-
thing currently known about the distribution of Λ(n) in short intervals, where the best
unconditional result is ∣∣∣ 1

H

∑
x<n6x+H

Λ(n)− 1

X

∑
X<n62X

Λ(n)
∣∣∣ = o(1)

for all but o(X) natural numbers x ∈ [X, 2X), provided H(X) > X1/6+ε.
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Our exposition here will broadly follow that of Soundararajan from his Bourbaki seminar
of 2016. His exposition is masterful, but not optimally suited for the present purposes. It
is just a little too long for our limited time – he proves the theorem 5 times, in increas-
ing generality – and I also feel it is also important to add some extra details and further
explanations for the student (and in particular a proof of the Turán–Kubilius inequality,
and more details about L2 bounds of Dirichlet polynomials, rather than deferring this to an
examples sheet).

Some corollaries
The work of Matomäki–Radziwi l l – as well as being a powerful tool in other even more

sophisticated arguments (see the final lectures on correlations of multiplicative functions) –
admits some cute corollaries. Let us prove a couple of them.

Corollary 10.3 (Sign-changes). The Liouville function enjoys a positive proportion of sign
changes: precisely, there exists a δ > 0 such that for all large enough N there is a K > δN
and integers 1 6 n1 < n2 < · · · < nK 6 N such that λ(nj)λ(nj+1) < 0 for all 1 6 j 6 K−1.

Proof. This is almost immediate. Indeed, choose ε > 0 to be small. Letting H = H(ε) be
large enough, and assuming N > N(ε) > H is large enough, by Theorem 10.2 and the prime
number theorem we see that for all but εN integers x ∈ (N, 2N ] we have∑

x<n6x+H

λ(n) 6 εH.

Call such an interval good (otherwise call the interval bad). If I := (x, x + H] is good then
there exists some n+

x ∈ I for which λ(n+
x ) = 1 and some n−x ∈ I for which λ(n−x ) = −1.

It remains to find a large collection of disjoint good intervals. To this end, consider the
partition of (a subset of) (N, 2N ] into intervals of the form (N + 2kH,N + 2(k + 1)H] for
k ∈ Z>0 ranging from 0 to N/100H. If ε is small enough, it must be that � N/H of the
intervals (N + 2kH,N + 2(k+ 1)H] contain a good interval. Indeed, if not then there would
be � H · (N/H) = N bad intervals, contrary to assumption.

Since each good interval gives us at least one sign change, and the intervals above are
disjoint by construction, we have � N/H �ε N sign changes in total. �

Corollary 10.4. For every ε > 0, there is a constant C(ε) such that for all large enough

N , the interval [N,N + C(ε)
√
N ] contains an integer that is N ε-friable.

Contrast this result with what is known for primes. It is known by work of Baker–Harman–
Pintz that we can find a prime in every interval of the form [N,N +N0.525] (provided N is
large enough), but this 0.525 is extremely hard won! Note that the prime number theorem
by itself can’t even show that there always exists primes in the range [N,N +N0.999].

A result of strength [N,N +N0.5+ε] is only known under the Lindelhöf hypothesis (which
is the statement that |ζ(1/2 + it)| �ε |t|ε for every ε > 0). And even the Riemann hypoth-
esis only gets you to [N,N +N1/2 logN ].

(Actually, Matomäki–Radziwi l l manage to prove an asymptotic for the number of N ε-

friables in intervals of size H
√
N for any H = H(N)→∞, but we won’t present the proof

of this.)

To prove the above corollary we need to know something about the averages of the indi-
cator function of friable numbers in long intervals. Many precise statements are known, but
we satisfy ourselves with a weak and easy-to-prove result.
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Lemma 10.5. Let

sNε(n) =

{
1 if p|n⇒ p 6 N ε

0 otherwise

be the indicator function of the N ε-friable numbers. Then∑
N<n62N

sNε(n)�ε N.

Proof. Without loss of generality we assume that ε = 1/k for some large integer k, and set
δ = ε− ε2/2. If n ∈ (N, 2N ] has the form mp1 . . . pk, where N δ 6 p1 6 · · · 6 pk 6 N ε, then
sNε(n) = 1, since

m 6 2N1−kδ = 2N ε/2

implies that m is N ε-friable too. Since m < p1, such a number n has a unique representation
in this form, up to possible reordering of the p1, . . . , pk if some of these primes happen to
be equal. Hence

∑
n6N

sNε(n) >
1

k!

∑
Nδ6p16···6pk6Nε

∑
N/(p1···pk)<m62N/(p1···pk)

1

>
1

k!

∑
Nδ6p16···6pk6Nε

( N

p1 . . . pk
− 1
)
.

The number of terms in the sum is at most( ∑
p6Nε

1
)k
�
( N ε

(log(N ε))

)k
= oε(N)

by Chebyschev’s bounds, so the contribution from the −1 terms can be ignored.
The rest of the sum is

>
N

(k!)2

( ∑
Nδ6p6Nε

1

p

)k
.

The most basic form of Mertens estimate for
∑

p6X 1/p = log logX + O(1) is a bit too

weak to apply here (as the O(1) terms could conspire against us), but we can conclude from
partial summation and Chebyschev’s bounds that∑

Nδ6p6Nε

1

p
�

J∑
j=0

∑
Nε2−j−1<p62−jNε

1

p
�

J∑
j=0

2−jN ε

logN

1

2−jN ε
� J

logN
,

where

J � log(N ε/N δ) = (ε− ε+ ε/2) logN �ε logN.

So ∑
Nδ6p6Nε

1

p
�ε 1,

and this settles the lemma. �

Proof of corollary. Without loss of generality we may assume that ε is sufficiently small.
Now, since sNε(n) ∈ M0 and real-valued, we can apply Theorem 10.2 to this function. By
the preceding lemma we have 1√

N

∑
√
N<n62

√
N

sNε(n)�ε 1.

Now, if N > N0(ε) and H(ε) is large enough, the exceptional set

E := {x ∈ [
√
N/2, 2

√
N ] : the interval [x, x+H(ε)] contains no N ε-friable number},
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has measure |E| � ε
√
N . This is since for all x ∈ E we have, replacing x by the nearest

integer to x if necessary,∣∣∣ 1

H(ε)

∑
x<n6x+H(ε)

sNε(n)− 1√
N

∑
√
N<n62

√
N

sNε(n)
∣∣∣ > ∣∣∣ 1√

N

∑
√
N<n62

√
N

sNε(n)
∣∣∣−O( 1

H(ε)

)
> g(ε) > 0

for some function g. Now apply Theorem 10.2 with the value g(ε).

If for some x ∈ [
√
N, 2
√
N ] we had both x /∈ E and N/x /∈ E , then we would be able to

find N ε-friable numbers in [x, x + H(ε)] and also in [N/x,N/x + H(ε)] and their product

would be in [N,N + 4H(ε)
√
N ] (and therefore the corollary would be satisfied). Thus, were

the corollary to fail, we would have to have

N1/2 6

2
√
N∫

√
N

(1E(x) + 1E(N/x)) dx 6 4|E| 6 4εN1/2,

which is a contradiction if ε is small enough.
�

Converting to an L2 estimate
Now let us start our journey towards Theorem 10.1. Let us assume that f is not 1-

pretentious, i.e. that D(f, 1;∞) =∞. Since f is real, we have the observation from Lecture
3 that D(f, nit;∞) =∞ for all t 6= 0. Hence, by Halasz’s theorem we know that

1

X

∑
X<n62X

f(n) =
1

X

( ∑
n62X

f(n)−
∑
n6X

f(n)
)

= 2M2X(f)−MX(f) = o(1).

Therefore our task is to show that for at least X − o(X) integers x ∈ (X, 2X] we have∣∣∣ 1

H

∑
x<n6x+H

f(n)
∣∣∣ = o(1)

as X → ∞. If it helps you, for most of what we say you can assume that f = λ. Unfortu-
nately, as we have already discussed when mentioning the quantitative aspects of Halasz’s
theorem at the end of Lecture 5, λ does enjoy some stronger estimates on its partial sums
than are enjoyed by multiplicative functions in general. This means that one central idea
to the general proof is not required (but that won’t come up for another three lectures, so
perhaps best not to worry at this point).

We will follow our ‘four-step programme’ from Lecture 1. For Step 1, we need to express
the theorem we want to prove in terms of estimating a particular sum.

Lemma 10.6. Suppose that for all f ∈ M0 that are real-valued and not 1-pretentious we
have

1

X

2X∫
X

∣∣∣ 1

H

∑
x<n6x+H

f(n)
∣∣∣2 dx = o(1).

Then Theorem 10.1 follows (for the same f).

The idea, of proving ‘almost–all’ results by deducing them from L2 average, is an excep-
tionally common one (that I have used in several of my papers in fact!). In probabilistic
language, we are making use of Chebyschev’s inequality.
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Proof. Let ε > 0, and let X and H be large enough so that

1

X

2X∫
X

∣∣∣ 1

H

∑
x<n6x+H

f(n)
∣∣∣2 dx 6 ε3.

Then let E ⊂ [X, 2X] be the set of exceptional x ∈ [X, 2X] for which 1
H
|
∑

x<n6x+H f(n)| >
ε. We then have that

|E| � ε3ε−2X = εX.

Theorem 10.2 follows immediately, and so Theorem 10.1 too. �

Our task is then to estimate

1

X

2X∫
X

∣∣∣ 1

H

∑
x<n6x+H

f(n)
∣∣∣2 dx.
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11. Dirichlet polynomials I

Transformation to an integral
Step 2 of our rubric is to transform the sum from Step 1 into an integral over ‘frequency

space’. We will make use of the following version of Parseval’s theorem (which is very similar
to the first lemma of Lecture 5).

Lemma 11.1 (Parseval). Let f : N −→ C be a finitely supported function, and define the
associated Dirichlet polynomial F (t) :=

∑
n>1

f(n)nit. Let T > 1 be a real number. Then

∞∫
0

∣∣∣ ∑
xe−1/T<n6xe1/T

f(n)
∣∣∣2 dx
x

=
2

π

∞∫
−∞

|F (t)|2
(sin(t/T )

t

)2

dt.

NB: the measure dx
x

is the natural translation invariant measure on the multiplicative
group (R>0,×). This lemma is basically just writing out explicitly the convolution identity
for Fourier transforms on this group.

Proof. For any real number u put

g(u) =
∑

eu−
1
T <n6eu+

1
T

f(n).

Then

ĝ(t) =

∞∫
−∞

g(u)e(−tu) du =
∑
n

f(n)

logn+1/T∫
logn−1/T

e(−tu) du

=
∑
n

f(n)

−2πit
(e(−t(log n+ 1/T ))− e(−t(log n− 1/T )))

= F (−2πt)
sin(2πt/T )

πt
.

We have g ∈ L1(R)∩L2(R), so by Plancherel’s theorem and the substitution x = eu we have

∞∫
0

∣∣∣ ∑
xe−1/T<n6xe1/T

f(n)
∣∣∣2 dx
x

=

∞∫
−∞

|g(u)|2 du =

∞∫
−∞

|ĝ(t)|2 dt =

∞∫
−∞

|F (−2πt)|2
(sin(2πt/T )

πt

)2

dt

=
2

π

∞∫
−∞

|F (t)|2
(sin(t/T )

t

)2

dt

after a change of variables. �

Now, this lemma was not quite what we wanted, because the interval xe−1/T 6 n 6
xe1/T is ‘multiplicatively small’ rather than ‘additively small’. But, by a suitable averaging
argument, we can get round this issue.

Lemma 11.2 (An averaging argument). Let X be sufficiently large, and suppose f : N −→ C
is a function supported on [X, 3X]. Define the associated Dirichlet polynomial F (t) :=∑
n>1

f(n)nit. Then for any real number H in the range 1 6 H 6 X/10, we have

1

X

∞∫
0

∣∣∣ 1

H

∑
x<n6x+H

f(n)
∣∣∣2 dx� ∞∫

−∞

|F (t)|2 min
( 1

X2
,

1

t2H2

)
dt.
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Proof. For ease of notation, we temporarily define F(x) :=
∑

n6X f(n). Note that, by the
triangle inequality, for any ν ∈ [2H, 3H] we have

∞∫
0

|F(x+H)−F(x)|2 dx�
∞∫

0

(|F(x+ ν)−F(x)|2 + |F(x+H)−F(x+ ν)|2) dx.

Integrating this over all ν in the range 2H 6 ν 6 3H, we obtain that

H

∞∫
−∞

∣∣∣ ∑
x<n6x+H

f(n)
∣∣∣2 dx

=

3H∫
2H

∞∫
−∞

∣∣∣ ∑
x<n6x+H

f(n)
∣∣∣2 dx dν

�
3H∫

2H

∞∫
−∞

|F(x+ ν)−F(x)|2 dx dν +

3H∫
2H

∞∫
−∞

|F(x+ ν)−F(x+H)|2 dx dν

�
3H∫

2H

∞∫
−∞

|F(x+ ν)−F(x)|2 dx dν +

3H∫
2H

∞∫
−∞

|F(x+ ν −H)−F(x)|2 dx dν

�
∞∫

−∞

3H∫
H

|F(x+ ν)−F(x)|2 dν dx,

by translating the ν variable in the second integral. Now in the inner integral over ν we
substitute ν = δx. It follows, from the limited supported of f and the bound H 6 X/10,
that the above integral is

�
3X∫

X/2

10H/X∫
H/10X

|F(x(1 + δ))−F(x)|2x dδ dx

=

10H/X∫
H/10X

3X∫
X/2

|F(x(1 + δ))−F(x)|2x dx dδ

� HX max
H/10X6δ610H/X

3X∫
X/2

|F(x(1 + δ))−F(x)|2 dx
x
.

Now, appealing to the previous lemma with T = 2/ log(1 + δ), the present lemma follows,
noting that (sin(t/T )

t

)2

� min(1/T 2, 1/t2).

�

So, to prove the main theorem (Theorem 10.1) when H(X) 6 X/10 it suffices to show
that
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∞∫
−∞

|F (t)|2 min
( 1

X2
,

1

t2H2

)
dt = o(1)

where F (t) =
∑

X6n63X

f(n)nit for f ∈ M0 real-valued. (The constraint H 6 X/10 will not

be significant in what follows).
Let us put this bound into context. Remember Montgomery’s mean value theorem bound

from Lecture 4 (Theorem 4.11), which gives

T∫
−T

|F (t)|2 dt� (T +X)
∑
n

|f(n)|2 � (T +X)X.

Remember how the TX term expressed a principle of ‘square-root cancellation on average’ –
one is not going to be able to improve this part – and the theX2 corresponds to the possibility
that |F (t)| could be as large as X for a few values of t. By using more information about
the structure of F (t), there is a chance that we can improve the X2 part.

It should be noted that Montgomery’s mean value theorem can be used to establish the
bound

∞∫
−∞

|F (t)|2 min
( 1

X2
,

1

t2H2

)
dt = O(1),

so all we are looking for is the smallest possible amount of further cancellation in this
integral. Indeed,

X/H∫
−X/H

|F (t)|2 min
( 1

X2
,

1

t2H2

)
dt =

1

X2

X/H∫
−X/H

|F (t)|2 � 1

X2
((X/H) +X)X)� 1,

and

∫
|t|>X/H

|F (t)|2 min
( 1

X2
,

1

t2H2

)
dt =

1

H2

∫
|t|>X/H

|F (t)|2

t2
dt

� 1

H2

∞∑
k=0

H2

(2kX)2

∫
2kX/H6t62k+1X/H

|F (t)|2 dt

� 1

H2

∞∑
k=0

H2

(2kX)2
·X
(
X +

2k+1X

H

)
� 1.

Note in both cases that the ‘square-root cancellation on average’ term is actually O(1/H),
and is therefore o(1). Furthermore note that, by the same method, we may discount any
contribution to the integral that comes from

|t| > Xw(X)/H,

where w(X)→∞ as X →∞. Thus, more or less, we have replace a short average of length
H in physical space with a long average of length X/H in frequency space. Contrast this
with the proof of Halasz’s theorem, we had a long average of length X in physical space,
which we replaced with a short average of length T (for some very slowly growing function
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T ) in frequency space.

The rest of the action of the proof then moves into Step 3 of our four-step plan – the hard
step! – when we have to understand the integrand |F (t)|2 extremely well. There will be two
main tools here:

• a more precise mean value theorem than Montgomery’s all-purpose estimate, which
will enable us to extract nearly square-root cancellation on average for the quantity
|F (t)|, where the average is taken over a possibly much smaller and much more ir-
regular set E ⊂ [−T, T ] rather than the full interval t ∈ [−T, T ];

• an approximate factorisation F (t) ≈ F1(t)F2(t) . . . Fk(t), with which we will play L∞

and L2 bounds off against each other (in a not dissimilar way to our proof of Halasz’s
theorem, albeit within a much more intricate argument).

The factorisation will be the topic of next lecture. For the rest of today, we will prove the
following mean value theorem.

Theorem 11.3 (Halasz–Montgomery bound). Let f : N −→ C be an arithmetic function,
let T > 2, and let E ⊂ [−T, T ] be a measurable subset with measure |E|. Then∫

E

∣∣∣∑
n6N

f(n)nit
∣∣∣2 dt� (N + |E|T 1/2 log T )

∑
n6N

|f(n)|2.

This bound is stronger than Montgomery’s all-purpose mean value theorem provided
|E| � T 1/2(log T )−1.

There are a few different ways to handle the proof of this result – we will choose the most
concrete way (avoiding the use of the ‘duality principle’, as there are already rather a lot of
ideas in this course as it is!).

Proof. Let FN(t) =
∑

n6N f(n)nit. Then

I :=

∫
E

|FN(t)|2 dt =

∫
E

∑
n6N

f(n)n−itFN(t) dt

6
∑
n6N

|f(n)|
∣∣∣ ∫
E

FN(t)n−it dt
∣∣∣.

Using Cauchy–Schwarz we obtain

I2 6
(∑
n6N

|f(n)|2
)(∑

n6N

∣∣∣ ∫
E

FN(t)n−it dt
∣∣∣2)

6
(∑
n6N

|f(n)|2
)( ∑

n62N

(
2− n

N

)∣∣∣ ∫
E

FN(t)n−it dt
∣∣∣2).

We have seen this device, of introducing a smoother cut-off function, when we proved Mont-
gomery’s estimate.

Expanding out the square, and swapping the orders of summation and integration, we
observe that the second term of the above is equal to∫

t1,t2∈E

FN(t1)FN(t2)
∑
n62N

(
2− n

N

)
ni(t2−t1) dt1 dt2. (6)
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Now, assuming the bound∑
n62N

(
2− n

N

)
nit � N

1 + |t|2
+ (1 + |t|)1/2 log(2 + |t|), (7)

we may conclude quickly. Indeed, since |FN(t1)||FN(t2)| 6 |FN(t1)|2 + |FN(t2)|2 we obtain
that (6) is

�
∫

t1,t2∈E

|FN(t1)||FN(t2)|
( N

1 + |t1 − t2|2
+ (1 + |t1 − t2|)1/2 log(2 + |t1 − t2|)

)
dt1 dt2

�
∫

t1∈E

|FN(t1)|2
∫

t2∈E

( N

1 + |t2 − t1|2
+ T 1/2 log T

)
dt2

)
dt1

� (N + |E|T 1/2 log T )I.

So

I2 � I(N + |E|T 1/2 log T )
∑
n6N

|f(n)|2,

and the theorem follows by dividing through by I. �

For the rest of the lecture we will be focussed on proving the bound (7). The techniques
we will cover here are not going to appear again in future lectures, so if you like you can
think of this material as purely supplementary. However, these techniques do speak of more
general principles for bounding exponentials sums that you will come across as you learn
more analytic number theory.

We did prove some bound on
∑

n6N n
it before, way back in lecture 2, using a simple

partial summation argument, namely∑
n6N

nit =
N1+it

1 + it
+O(1 + |t| logN).

This implies ∣∣∣∑
n6N

nit
∣∣∣� N

1 + |t|
+O(1 + |t| logN),

and with the extra smoothing given by the (2− n/N) term one could establish the bound∣∣∣ ∑
n62N

(
2− n

N

)
nit
∣∣∣� N

1 + |t|2
+O(1 + |t| logN)

by similar means (the fast decay of (1 + |t|2)−1 versus (1 + |t|)−1 comes from the extra
smoothing). However, this error term is in no way sufficient for our later purposes. We
will use a stronger argument than just basic partial summation, one which is based on the
poisson summation formula.

First some preparatory lemmas.

Lemma 11.4 (First derivative bound). Let r, θ : [a, b] −→ R be functions such that r(x) is
differentiable and θ is twice-differentiable. Suppose that r(x)/θ′(x) > 0 and (r(x)/θ′(x))′ < 0
for all x ∈ [a, b]. Then ∣∣∣ b∫

a

r(x)e(θ(x)) dx
∣∣∣� r(a)

θ′(a)
.
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If r(x)/θ′(x) < 0 and (r(x)/θ′(x))′ < 0 for all x ∈ [a, b] then∣∣∣ b∫
a

r(x)e(θ(x)) dx
∣∣∣� − r(b)

θ′(b)
.

Proof. By integration by parts,

b∫
a

r(x)e(θ(x)) dx =

b∫
a

r(x)

θ′(x)
θ′(x)e(θ(x)) dx

=
[r(x)e(θ(x))

2πiθ′(x)

]b
a
− 1

2πi

b∫
a

e(θ(x))
( r(x)

θ′(x)

)′
dx

Therefore, by the triangle inequality and the assumptions of the lemma, we have∣∣∣ b∫
a

r(x)e(θ(x)) dx
∣∣∣ 6 r(b)

2πθ′(b)
+

r(a)

2πθ′(a)
+

1

2π

b∫
a

∣∣∣( r(x)

θ′(x)

)′∣∣∣ dx
=

r(b)

2πθ′(b)
+

r(a)

2πθ′(a)
− 1

2π

b∫
a

( r(x)

θ′(x)

)′
dx

=
r(b)

2πθ′(b)
+

r(a)

2πθ′(a)
− 1

2π

( r(b)
θ′(b)

− r(a)

θ′(a)

)
� r(a)

θ′(a)

which gives the first half of the lemma. The second part follows by the same argument. �

Montgomery gives a nice geometric description of this lemma. Namely, considering the
function Z(t) :=

∫ t
a
r(x)e(θ(x)) dx as a curve in the complex plane, the conditions of the

lemma imply that the radius of curvature is decreasing, and thus the curve Z(t) spirals
inwards (and so is bounded by the radius of the initial osculating circle).

Lemma 11.5 (Second derivative bound). Let f : [a, b] −→ R, and suppose that 0 < λ 6
f ′′(x) for all x ∈ [a, b]. Then ∣∣∣ b∫

a

e(f(x)) dx
∣∣∣� 1√

λ
.

Proof. Let δ > 0 be a parameter to be chosen later, and let J := {x ∈ [a, b] : |f ′(x)| 6 δ}.
Since f ′ is monotonic, J is an interval of length � δ/λ. We estimate the contribution from
this range trivially, namely ∣∣∣ ∫

J

e(f(x)) dx
∣∣∣� δ

λ
.

The remaining portion of the integral (which consists of at most two intervals) can be
estimated using the first derivative bound in Lemma 11.4, taking r(x) = 1 and θ(x) = f(x).
Using this bound we get ∣∣∣b

a
e(f(x)) dx

∣∣∣� δ

λ
+

1

δ
,

which is O(1/
√
λ) if we take δ =

√
λ. The lemma is settled. �

Lemma 11.5 is the beginning of a general method for estimating exponential sums and
integrals known as the ‘method of stationary phase’, or the ‘saddle point method’. In its
most basic form, the idea is that when f ′(x) is close to zero we have that f(x) is slowly
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varying, and thus the phases e(f(x)) all point in roughly the same direction. Thus we do
not expect cancellation from this portion of the integral; but when |f ′(x)| is large, f(x)
varies rapidly and one can hope for cancellation over the phase e(f(x)).

Now we come to the real meat. We will use a version of the Poisson summation formula,
which says that if r ∈ L1(R) and has finitely many jump discontinuities (or more generally
has bounded variation) then∑

n∈Z

r(n+) + r(n−)

2
= lim

K→∞

K∑
−K

r̂(k),

where r(n+) and r(n−) denote the upper and lower limits respectively.

Lemma 11.6 (Truncated Poisson summation). Let f : [a, b] −→ R be a twice differentiable
function and assume that f ′′(x) > 0 for all x ∈ [a, b]. Then, writing α = f ′(a) and β = f ′(b),
we have ∑

a6n6b

e(f(n)) =
∑

α− 1
2
6k6β+ 1

2

b∫
a

e(f(x)− kx) dx+O(log(2 + β − α)).

Proof. As an initial manoeuvre, by replacing f(x) by f(x)−Nx (where N is the integer such
that |N − (α + β)/2| 6 1/2), one may assume without loss of generality that |α + β| 6 1,
i.e. α ≈ −β. We may also adjust a and b so that ‖2πa‖ > 1/100 and ‖2πb‖ > 1/100.

Now, consider the function

r(x) =

{
e(f(x)) if x ∈ [a, b]

0 otherwise.

Then r ∈ L1(R), and r is continuous apart from the discontinuities at a and b, so we can
apply the Poisson summation formula to conclude that∑

n∈Z

r(n+) + r(n−)

2
= lim

K→∞

K∑
−K

r̂(k).

Then, the sum on the left-hand side is within O(1) of the sum we wish to estimate, and

b∫
a

e(f(x)− kx) dx = r̂(k).

Therefore the lemma is proved, provided we can show that∣∣∣ ∑
k/∈[α− 1

2
,β+ 1

2
]

|k|6K

r̂(k)
∣∣∣� log(2 + β − α)

for all sufficiently large k.
Integration by parts yields

r̂(k) =
e(f(a)− ka)

2πik
− e(f(b)− kb)

2πik
+

1

k

b∫
a

f ′(x)e(f(x)− kx) dx.

We can use the first derivative bound in Lemma 11.4 to estimate the second integral. In-
deed, if k > β then f ′(x)/(f(x) − kx)′ = f ′(x)/(f ′(x) − k) has the opposite sign to f ′(x).
Furthermore, we have( f ′(x)

(f(x)− kx)′

)′
=
( f ′(x)

f ′(x)− k

)′
=
−kf ′′(x)

(f ′(x)− k)2
< 0
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since k > 0 and f ′′(x) > 0. Splitting into two intervals (one on which f ′(x) < 0 and one on
which f ′(x) > 0), we use Lemma 11.4 to get the bounds∣∣∣1

k

∫
x∈[a,b]
f ′(x)>0

f ′(x)e(f(x)− kx) dx
∣∣∣� −f ′(b)

k(f ′(b)− k)
=

β

k(k − β)
,

plus some similar terms. The sum of this contribution is at msot∑
k>β+ 1

2

β

k(k − β)
�

∑
β+ 1

2
<k<2β+2

β

k(k − β)
+
∑

k>2β+2

β

k(k − β)
�

∑
k6β+2

1

k
+
∑

k>2β+2

β

k2
� log(2+β).

Performing an analogous argument for k < α, one ends up with∑
k/∈[α−1,β+1]
|k|6K

r̂(k) = e(f(b))
∑

β+1<k6K

sin 2πkb

πk
− e(f(a))

∑
β+1<k6K

sin 2πka

πk
+O(log(2 + β − α)).

But partial summation shows that the Fourier series

∑
L6k6M

sin 2πkb

πk
=

1

πM

( ∑
L6k6M

sin 2πkb
)

+

M∫
L

( ∑
L6k6y

sin 2πkb
)
y−2 dy

= O(1) +

M∫
L

O(1/‖2πb‖)y−2 dy = O(1).

Arguing analogously for sin 2πka, this completes the lemma. �

This lemma is part of a general technique of exponential sums called the ‘van der Corput
B process’ – have at look at the theory of ‘exponent pairs’ if you’re interested.

Finally we can prove the estimate (7).

Proof. Without loss of generality, by taking complex conjugates we can assume that t < 0,
and thus (t log x

2π

)′′
= − t

2πx2
> 0

for all x > 0. Also we may assume that |t| > 2, since the estimate (7) is trivial otherwise.
Using partial summation, we get

∑
n62N

(
2− n

N

)
nit =

1

N

2N∫
1

∑
n6y

nit dy,

and by using truncated poisson summation as in the previous lemma we obtain∑
y/2<n6y

nit =
∑

y/2<n6y

e
(t log n

2π

)

=
∑

α− 1
2
6k6β+ 1

2

y∫
y/2

e
(t log x

2π
− kx

)
dx+O

(
log
(

2 +
t

4πy

))
,

where α = t/(4πy) and β = t/(2πy).
By the second derivative bound (Lemma 11.5), we obtain

y∫
y/2

e
(t log x

2π
− kx

)
dx� y

|t|1/2
.
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Now we just split into various regimes of estimation. When y > |t|, we only get a contribution
from k = 0, and hence ∑

|t|6n6y

nit =

y∫
|t|

xit dx+O(1) =
y1+it

1 + it
+O(1).

When |t|1/2 6 y 6 |t|, we use the second derivative bound above to derive that∑
y/2<n6y

nit � |t|
y
· y

|t|1/2
+O(log |t|)� |t|1/2 +O(log |t|).

Summing over dyadic ranges we obtain∣∣∣ ∑
|t|1/26n6|t|

nit
∣∣∣� |t|1/2 log |t|.

Finally when y 6 |t|1/2 we can bound the sum trivially as∣∣∣∑
n6y

nit
∣∣∣� |t|1/2.

Putting everything together, we get∣∣∣ 1

N

2N∫
1

∑
n6y

nit dy
∣∣∣� |t|1/2 log |t|+ 1

N

∣∣∣ 2N∫
|t|

y1+it

1 + it
dy
∣∣∣

� |t|1/2 log |t|+ 1

N

∣∣∣ N2+it

(1 + it)(2 + it)

∣∣∣
� |t|1/2 log |t|+ N

1 + |t|2

as required. �

Thus we have finally proved the Halasz–Montgomery mean value theorem.
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12. Dirichlet polynomials II: decompositions

In this lecture we will define the approximate decomposition of the Dirichlet polynomial
F (t) :=

∑
n∈[X,2X]

f(n)nit that we will use to bound the integral

∞∫
−∞

|F (t)|2 min
( 1

X2
,

1

H2t2

)
dt

that we considered in the last lecture. In fact we will do this twice; first to give the de-
composition that we will actually use in our proof, and second to give the decomposition
that is used in the original paper of Matomäki–Radziwi l l. The decomposition of Matomäki–
Radziwi l l provides stronger quantitative bounds, but is a little more complicated.

Throughout we will assume that f ∈ M0 is real-valued and completely multiplicative.
The central idea is to write f(n)nit as f(p)pitf(m)mit and then to sum over p and m in
various ranges. This is of course similar to what we did when proving Halasz’s theorem.
However, we need to be careful to weight f(n) by an appropriate factor in order to take
account of how many ways we can represent n as a product n = pm with p and m in suitable
ranges.

The central workhorse in our decomposition is the Turán–Kubilius inequality. I set this
inequality as an exercise on the first examples sheet – and discussed it briefly in the examples
class – but given its central rôle in what follows I think it is important that I lecture the
proof as well.

Here is the result we will use.

Theorem 12.1 (Turán–Kubilius inequality). Let g : N −→ C be an additive function, i.e.

g(mn) = g(m) + g(n) when gcd(m,n) = 1. Let EX(g) :=
∑

pk6X
g(pk)
pk

(1− 1
p
). Then:

(1) 1
X

∑
n6X g(n) = EX(g) +O(1/ logX), if |g(pk)| � 1 for all prime powers pk.

(2) 1
X

∑
n6X |g(n)− EX(g)|2 �

∑
pk6X

|g(pk)|2
pk

.

One may think of this result as a bound for the ‘mean’ and ‘variance’ of the additive
function g. In words, we have that ‘additive functions are always close to their mean values’.

Consequence of the Turán–Kubilius inequality
The standard application of the Turán–Kubilius inequality is to establishing the normal

order of ω(n), where ω(n) :=
∑
p|n

1. The function ω is additive, and

EX(ω) =
∑
pk6X

ω(pk)

pk

(
1− 1

p

)
=
∑
pk6X

1

pk

(
1− 1

p

)
= log logX +O(1)

and ∑
pk6X

|ω(pk)|2

pk
=
∑
pk6X

1

pk
= log logX +O(1).

Therefore, by the Turán–Kubilius inequality we have

1

X

∑
n6X

|ω(n)− log logX|2 � log logX.

We can use Chebyshev’s inequality to deduce that for any function θ(X) such that θ(X)→
∞ as X →∞, we have
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1

X
|{n 6 X : |ω(n)− log logX| > θ(X)

√
log logX}| �

1
X

∑
n6X
|ω(n)− log logX|2

θ(X)2 log logX

� 1

θ(X)2
= o(1)

as X → ∞. This certainly implies that for all ε > 0, almost all n 6 X satisfy (1 −
ε) log logX 6 ω(n) 6 (1 + ε) log logX, i.e. almost all numbers have basically the same
number of prime factors.

This result was first proved by Hardy–Ramanujan.It may seem (at least to me!) inherently
surprising that such a result should be true. For one thing, we observe that

1

X

∑
n6X

2ω(n) >
1

X

∑
n6X

µ2(n)τ(n) � logX

and yet
1

X

∑
n6X

2log logX =
1

X

∑
n6X

(logX)log 2 � (logX)log 2,

which is of a lower order of magnitude to logX since log 2 < 1. Therefore we see that the
main contribution to the average of

∑
n6X µ

2(n)τ(n) is actually not from typical integers
but rather from integers that have unusually many prime factors. (This is also true for the
average

∑
n6X τ(n)).

There is actually a rather simple proof of the normal order of ω(n) that doesn’t use the
full strength of the Turán–Kubilius inequality. This comes from just considering the primes
p 6 X1/100, say, for which the L2 estimate on∑

n6X

( ∑
p|n

p6X1/100

1− log logX
)2

is easier to establish. In fact this approach can be used to approximate all the moments of
ω(n) − log logX, and establish an asymptotic normal distribution. This is the Erdős–Kac
theorem, and will be on the example sheet.

The proof of the Turán–Kubilius inequality is not so deep, and indeed the result itself
is not terribly strong, in the sense that it never saves more than a factor log logX over a
trivial bound. Indeed, in the case of ω(n) say, a trivial bound would lead to

1

X

∑
n6X

(ω(n)− log logX)2 � (log logX)2 +
1

X

∑
n6X

ω(n)2 � (log logX)2,

which is only a factor of log logX out from the Turán–Kubilius bound. Nonetheless, in the
context of this section of the course, any saving is a good saving.

Proof of Turán–Kubilius. For part (1), we just calculate∑
n6X

g(n) =
∑
n6X

∑
pk‖n

g(pk)

=
∑
pk6X

g(pk)
∑
n6X
pk‖n

1

=
∑
pk6X

g(pk)
(⌊X
pk

⌋
−
⌊ X

pk+1

⌋)
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= X
∑
pk6X

g(pk)

pk

(
1− 1

p

)
+O(

∑
pk6X

|g(pk)|).

Since we assume that |g(pk)| � 1 for all prime powers pk we get the error term in the
above is O(

∑
pk6X 1), which is

� X

logX
+

∑
26k6logX/ log 2

∑
p6X1/k

1� X

logX
+X1/2 logX � X

logX
.

This settles part (1) of the theorem.

For part (2) (which is the real meat), we expand out the square to get the sum of three
terms, namely

bXc
X
|EX(g)|2, − 2

X
<
(
EX(g)

∑
n6X

g(n)
)
, and

1

X

∑
n6X

|g(n)|2.

Each of these three terms will be approximately |EX(g)|2, −2|EX(g)|2, and |EX(g)|2 respec-
tively. So these main terms will cancel, and we will be left with the task of establishing that
the error terms are at �

∑
pk6X |g(pk)|2/pk.

A useful preparatory observation is the following: by Cauchy–Schwarz we have

|EX(g)| =
∣∣∣ ∑
pk6X

g(pk)

pk

(
1− 1

p

)∣∣∣
6
( ∑
pk6X

|g(pk)|2

pk

)1/2( ∑
pk6X

1

pk

)1/2

�
( ∑
pk6X

|g(pk)|2

pk

)1/2

(log logX)1/2.

Then we have, firstly,

bXc
X
|EX(g)|2 = |EX(g)|2 +O

( 1

X
|EX(g)|2

)
= |EX(g)|2 +O

( log logX

X

( ∑
pk6X

|g(pk)|2

pk

))
.

This error term is acceptable.
Regarding the second contributing term −2<(EX(g) 1

X

∑
n6X g(n)), by the argument for

part (1) of the theorem we have

−2<
(
EX(g)

1

X

∑
n6X

g(n)
)

= −2<
(
EX(g)

(
EX(g) +O

( 1

X

∑
pk6X

|g(pk)|
)))

= −2|EX(g)|2 +O
( 1

X
|EX(g)|

∑
pk6X

|g(pk)|
)

Now by applying our bounds on |EX(g)| from earlier, together with Cauchy–Schwarz on the∑
pk6X |g(pk)| term, we get

= −2|EX(g)|2 +O
( 1

X
(log logX)1/2

( ∑
pk6X

|g(pk)|2

pk

)1/2( ∑
pk6X

|g(pk)|2

pk

)1/2( ∑
pk6X

pk
)1/2)
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= −2|EX(g)|2 +O
(( log logX

logX

)1/2( ∑
pk6X

|g(pk)|2

pk

))
which is an acceptable error term.

The remaining issue is the third term 1
X

∑
n6X |g(n)|2, which will be the most complicated

to control. Expanding the square we have

1

X

∑
n6X

|g(n)|2 =
1

X

∑
n6X

∣∣∣∑
pk‖n

g(pk)
∣∣∣2

=
1

X

∑
pk,ql6X

g(pk)g(ql)
∑
n6X
pk‖n
ql‖n

1.

There are now two cases to consider. If p = q, then we only get a contribution when
k = l, yielding

1

X

∑
pk6X

|g(pk)|2
∑
n6X
pk‖n

1 =
1

X

∑
pk6X

|g(pk)|2
(⌊X
pk

⌋
−
⌊ X

pk+1

⌋)

6
∑
pk6X

|g(pk)|2

pk

which is an acceptable error term.
The remaining terms (when p 6= q) contribute

1

X

∑
pkql6X
p 6=q

g(pk)g(pl)
(⌊ X

pkql

⌋
−
⌊ X

pk+1ql

⌋
−
⌊ X

pkql+1

⌋
+
⌊ X

pk+1ql+1

⌋)
by inclusion exclusion. This is

=
∑

pkql6X
p6=q

g(pk)

pk
g(ql)

ql

(
1− 1

p

)(
1− 1

q

)
+O

( 1

X

∑
pkql6X
p 6=q

|g(pk)g(ql)|
)

=
∑

pkql6X

g(pk)

pk
g(ql)

ql

(
1− 1

p

)(
1− 1

q

)
+O

( 1

X

∑
pkql6X

|g(pk)g(ql)|
)

+O
( ∑
p,k,l: pk+l6X

|g(pk)g(pl)|
pk+l

)
.

We have two error terms to contend with. By Cauchy–Schwarz, we have

1

X

∑
pkql6X

|g(pk)g(ql)| � 1

X

( ∑
pkql6X

|g(pk)|2|g(ql)|2

pkql

)1/2( ∑
pkql6X

pkql
)1/2

� 1

X

( ∑
pk6X

|g(pk)|2

pk

)(
X
∑
pk6X

∑
ql6X/pk

1
)1/2

Considering just the second bracket here, we calculate∑
pk6X

∑
ql6X/pk

1�
∑
pk6X

X

pk log(1 +X/pk)
� X log logX

logX

(which can be seen by reducing the sum to a sum over primes p and then splitting into
dyadic ranges, for examples). So, overall we have

1

X

∑
pkql6X

|g(pk)g(ql)| �
( log logX

logX

)1/2 ∑
pk6X

|g(pk)|2

pk
,
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which is an acceptable error.
We also have (by Cauchy again)∑

p,k,l: pk+l6X

|g(pk)g(pl)|
pk+l

�
( ∑
p,k,l: pk+l6X

|g(pk)|2

pk+l

)1/2( ∑
p,k,l: pk+l6X

|g(pl)|2

pk+l

)1/2

�
∑
pk6X

|g(pk)|2

pk

∑
l

pl6X/pk

1

pl
�
∑
pk6X

|g(pk)|2

pk
,

which is again an acceptable error.
It remains to consider the ‘main term’∑

pkql6X

g(pk)

pk
g(ql)

ql

(
1− 1

p

)(
1− 1

q

)
.

This is equal to

|EX(g)|2 −
∑
pk6X
ql6X
pkql>X

g(pk)

pk
g(ql)

ql

(
1− 1

p

)(
1− 1

q

)
.

By Cauchy–Schwarz, the error term here is

6
( ∑

pk6X
ql6X
pkql>X

|g(pk)|2

pk
|g(ql)|2

ql

)1/2( ∑
pk6X
ql6X
pkql>X

1

pkql

)1/2

.

Here the first bracket is 6
∑

pk6X |g(pk)|2/pk, and the second bracket (squared) is

�
∑

pk6X1/2

1

pk

∑
X/pk<ql6X

1

ql
+
( ∑
X1/2<pk6X

1

pk

)2

�
∑

pk6X1/2

k log p

pk logX
+ 1� 1,

since by partial summation we have∑
X/pk<ql6X

1

ql
� (logX)− log(X/pk)

logX

for pk 6 X1/2. So the overall error is acceptable, and we conclude the theorem. �

We’re now going to show a baby version of the Dirichlet series decomposition we are going
to use in the next lecture. Let [P,Q] ⊂ [1, X] be a certain interval of primes, and let

ω[P,Q](n) :=
∑

p∈[P,Q]
p|n

1.

Then ω[P,Q] is an additive function and, letting

W[P,Q] :=
∑

p∈[P,Q]

1

p
≈ log logQ− log logP

we have W[P,Q] ≈ EX(ω[P,Q]) and so∑
n6X

(ω[P,Q](n)−W[P,Q])
2 � XW[P,Q]

by the Turán–Kubilius inequality. (Once we pick precise thresholds P,Q in the next lecture,
we can make all these approximations rigorous).
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Let f ∈ M0 be real valued, completely multiplicative, and not 1-pretentious. By the
triangle inequality we have

W 2
[P,Q]

2X∫
X

∣∣∣ ∑
x<n6x+H

f(n)
∣∣∣2 dx

�
2X∫
X

∣∣∣ ∑
x<n6x+H

f(n)w[P,Q](n)
∣∣∣2 dx+

2X∫
X

∣∣∣ ∑
x<n6x+H

f(n)(w[P,Q](n)−W[P,Q])
∣∣∣2 dx.

The second term here is

�
2X∫
X

( ∑
x<n6x+H

|f(n)|2
)( ∑

x<n6x+H

(w[P,Q](n)−W[P,Q])
2
)
dx

� XH2W[P,Q],

so we get

2X∫
X

∣∣∣ ∑
x<n6x+H

f(n)
∣∣∣2 dx =

1

W 2
[P,Q]

2X∫
X

∣∣∣ ∑
x<n6x+H

f(n)w[P,Q](n)
∣∣∣2 dx+O

( XH2

W[P,Q]

)
.

If W[P,Q] →∞ as X →∞, the error term is negligible.
The utility of doing this comes from the fact that the arithmetic function f(n)w[P,Q](n)

can be related to a Dirichlet series that admits a pleasant factorisation. Indeed, assuming
that Q/P is a power of 2, we have (by the previous Lemma 11.2)

1

X

2X∫
X

∣∣∣ 1

H

∑
x<n6x+H

f(n)w[P,Q](n)
∣∣∣2 dx� ∞∫

−∞

|A(t)|2 min
( 1

X2
,

1

t2H2

)
dt+ o(1)

where

A(t) =

O(log(Q/P ))∑
j=1

∑
2j−1P6p<2jP

f(p)pit
∑

X

2jP
6m< 2X

2j−1P

f(m)mit.

Indeed, we have that the coefficient a(n) of nit in A(t) is

O(log(Q/P ))∑
j=1

∑
2j−1P6p<2jP

f(p)
∑

X

2jP
6m< 2X

2j−1P
pm=n

f(m)

and so we have a(n) = 0 unless n ∈ [X/2, 4X], |a(n)| 6 w[P,Q](n) for all n, and if n ∈ [X, 2X)
we have a(n) = f(n)w[P,Q](n), by the complete multiplicativity of f . (This is the reason for
choice of the range of m).

NB: technically we only proved Lemma 11.2 for functions f that were supported on
[X, 3X]. Actually we’ll need to consider functions supported on [c1X, c2X] for more general
c1, c2: we’ll state the appropriate version next time.

Note that we have the factorisation (from Cauchy–Schwarz)
∞∫

−∞

|A(t)|2 min
( 1

X2
,

1

t2H

)
dt
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� (log(Q/P ))2 max
j�log(Q/P )

∞∫
−∞

∣∣∣ ∑
2j−1P6p<2jP

f(p)pit
∣∣∣2∣∣∣ ∑

X

2jP
6m< 2X

2j−1P

f(m)mit
∣∣∣2 min

( 1

X2
,

1

t2H2

)
dt.

(When we do this in full detail next lecture we will deal with the dyadic scales slightly
differently.) We will be playing off L∞ bounds on

∑
2j−1P6p<2jP f(p)pit and L2 bounds on∑

X/2jP6m<2X/2j−1P f(m)mit.

For the rest of today, I just want to spend 10-15 minutes or so discussing the different
Dirichlet series decomposition that was used by Matomäki–Radziwi l lin their work. They
centred their work around Ramaré’s identity.

Lemma 12.2 (Ramaré’s identity). For any P < Q and for all n > 1 we have∑
p∈[P,Q]
p|n

1

#{q ∈ [P,Q] : q|n
p
}+ 1(p,n/p)=1

=

{
1 if ∃p ∈ [P,Q] with p|n
0 otherwise.

Proof. Let A[P,Q],n = {p ∈ [P,Q] : p‖n} and B[P,Q],n = {p ∈ [P,Q] : p2|n}. Let a[P,Q],n =
|A[P,Q],n| and b[P,Q],n = |B[P,Q],n|. Then

∑
p∈[P,Q]
p|n

1

#{q ∈ [P,Q] : q|n
p
}+ 1(p,n/p)=1

=
∑

p∈A[P,Q],n

1

(a[P,Q],n + b[P,Q],n − 1) + 1
+

∑
p∈B[P,Q],n

1

a[P,Q],n + b[P,Q],n

= 1

provided the sum is non-empty. This settles the identity. �

Let

θp(m) :=
1

#{q ∈ [P,Q] : q|m}+ 1(p,m)=1

be the weight function from the above identity and let S = {n ∈ [X, 2X] : ∃p ∈ [P,Q] with p|n}.
Then if f ∈M0 is completely multiplicative we have∑

n∈[X,2X]
n∈S

f(n)nit =
∑

p∈[P,Q]

f(p)pit
∑

X
p
6m< 2X

p

f(m)mitθp(m/p).

Now, we know from sieving (Lemma 4.1) that

#{n ∈ [X, 2X] : n /∈ S} = X
logP

logQ
= X(1 + o(1))

for suitable choices of parameters Q and P . So one may approximate

1

X

2X∫
X

∣∣∣ 1

H

∑
x<n6x+h

f(n)
∣∣∣2 dx =

1

X

2X∫
X

∣∣∣ 1

H

∑
x<n6x+h

n∈S

f(n)
∣∣∣2 dx+ o(1)

�
∞∫

−∞

∣∣∣ ∑
p∈[P,Q]

f(p)pit
∣∣∣2∣∣∣ ∑

X
p
6m< 2X

p

f(m)mitθp(m/p)
∣∣∣2 min

( 1

X2
,

1

t2H2

)
dx+ o(1).
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which is a similar decomposition to the one that we achieved earlier, except that we had an
error of size ≈ (log(logQ/ logP ))−1 rather than (logQ/ logP )−1 (which is a smaller error).
So Ramaré’s identity turns out to be a more efficient approach regarding the quantitative
error terms, although the details are a bit more complicated to work through, owing to the
fact that the weight f(m)θp(m/p) is not multiplicative.

This finishes our description of the general decomposition result, based on the Turán–
Kubilius inequality that we will employ. Next time, we will replace the single scale [P,Q]
with multiple scales [P1, Q1], . . . , [PK , QK ] and begin the full decomposition of the integral
over A(t), splitting according to the L∞ size of the various Dirichlet polynomial factors.
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13. Ladders of scales

In this rather technical lecture, after several lectures of preparation, we will attack the
theorem of Matomäki–Radziwi l l head-on.

The time has come for me to decide exactly how strong a statement we will have time to
prove in these lectures. Let logk(X) denote the kth iterated logarithm of X (i.e. log2(X) =
log logX, log3X = log log logX etc.). After some consideration, I’ve decided to present the
full proof of the following result:

Theorem 13.1. Let f ∈M0 be completely multiplicative and real-valued, and assume that
D(f, 1;∞) =∞. Let X be an asymptotic parameter tending to infinity, and let H = H(X)
be a function with logK(X) 6 H 6 X (for some fixed K ∈ N). Then for all but oK(X)
natural numbers x ∈ [X, 2X) we have∣∣∣ 1

H

∑
x<n6x+H

f(n)
∣∣∣ = oK(1)

as X →∞. The error term can depend on D(f, 1;X), but is otherwise independent of f .

Our proof may be adapted to the proof of the full Matomäki–Radiwi l l theorem by taking
care to note the dependency of our error terms on K, but we won’t do this.

We have already shown that Theorem 13.1 is implied by the bound

1

X

2X∫
X

∣∣∣ 1

H

∑
x<n6x+H

f(n)
∣∣∣2 dx = oK(1). (8)

It will be a useful simplification to assume that H = o(X) rather than just H 6 X. This is
easy to do using Halasz’s theorem. Indeed, if H > εX we have

1

H

∑
x<n6x+H

f(n) =
1

H
((x+H)Mx+H(f)− xMx(f)) 6 ε−1o(1)

as X →∞, by Halasz’s theorem (using the fact that D(f, 1;∞) =∞). Choosing ε to be a
slow-enough decreasing function of X, we conclude that

1

X

2X∫
X

∣∣∣ 1

H

∑
x<n6x+H

f(n)
∣∣∣2 dx = o(1)

when H > εX. So we are left with the case H < εX, which implies that H = o(X).

We now make another simplifying observation. Suppose that logK(X) 6 H∗(X) <
H(X) = o(X), and suppose further that H∗(X) = o(H(X)). If (8) is known to hold
for the smaller scale H∗(X), then (8) also holds for the larger scale H(X). Indeed, by
splitting into smaller subintervals we observe that

2X∫
X

∣∣∣ ∑
x<n6x+H

f(n)
∣∣∣2 dx =

2X∫
X

∣∣∣( bH/H∗c∑
j=0

∑
x+jH∗<n6x+(j+1)H∗

f(n)
)

+O(H∗)
∣∣∣2 dx

� X(H∗)2 +
H

H∗

bH/H∗c∑
j=0

2X−jH∗∫
X−jH∗

∣∣∣ ∑
x<n6x+H∗

f(n)
∣∣∣2 dx

� X(H∗)2 +
H

H∗

bH/H∗c∑
j=0

( 2X∫
X

∣∣∣ ∑
x<n6x+H∗

f(n)
∣∣∣2 dx+O(j(H∗)3))

)
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� X(H∗)2 +
H

H∗

bH/H∗c∑
j=0

(oK(X(H∗)2) +O(j(H∗)3))

� X(H∗)2 + oK(XH2) +O(H3) = oK(XH2)

as X →∞. Here we used Cauchy–Schwarz, the fact that the inner-integral and the assump-
tion that (8) holds for the scale H∗.

So from now on I will assume without loss of generality that

H(X) = exp((logK+1 X)3)

for some large fixed K. This turns out to be a more convenient function to work with than
an iterated logarithm. Following on from the ideas of last time, it will be important to define
some scales of primes [P,Q] which we will use to factorise the relevant Dirichlet polynomials.
Right at the start, let us fix some intervals [P1, Q

′
1], [P2, Q

′
2], . . . , [PK , Q

′
K ], namely

P1 = exp((log logX)2), Q′1 = exp((log logX)3)

P2 = exp((log log logX)2), Q′2 = exp((log log logX)3)

and in general for k = 1, . . . , K let

Pk = exp((logk+1(X)2), Q′k = exp((logk+1(X)3).

For reference, we have

[PK , Q
′
K ] = [exp((logK+1X)2), H].

In order to avoid certain technical issues regarding dyadic pigeonholing, it will be conve-
nient for the ratio of the upper and lower bounds for our intervals are a power of 2. To that
end, we let Qk be the nearest integer to Q′k for which Qk of the form d2`Pke for some ` ∈ N.
We have Qk/Q

′
k � 1.

For ease of notation, we let

ωk(n) := ω[Pk,Qk](n) :=
∑

p|n:p∈[Pk,Qk]

1 and Wk := W[Pk,Qk] =
∑

p∈[Pk,Qk]

1

p
.

We have

Wk = log logQk − log logPk +O(1) = 3 logk+2(X)− 2 logk+2(X) +O(1)� logk+2(X),

which tends to infinity.
As we demonstrated last time, we can use the Turán–Kubilius inequality to introduce the

weights ωk into our L2 averages. Indeed, by the triangle inequality, we have

(
K∏
k=1

W 2
k

) 2X∫
X

∣∣∣ ∑
x<n6x+H

f(n)
∣∣∣2 dx

�
2X∫
X

∣∣∣ ∑
x<n6x+H

f(n)
K∏
k=1

ωk(n)
∣∣∣2 dx+

2X∫
X

∣∣∣ ∑
x<n6x+H

f(n)
( K∏
k=1

ωk(n)−
K∏
k=1

Wk

)∣∣∣2 dx
Note that we have the telescoping identity

K∏
k=1

ωk(n)−
K∏
k=1

Wk =
K∑
L=1

( ∏
k6L−1

ωk(n)
)

(ωL(n)−WL)
( ∏
L+16k6K

Wk

)
.
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Furthermore we have the bound∑
n63X

∏
k6L−1

ωk(n)2(ωL(n)−WL)2 =
∑

p1,q1∈[P1,Q1]
...

pL1
,qL−1∈[PL−1,QL−1]

∑
n63X
p1,q1|n
...

pL−1,qL−1|n

(ωL(n)−WL)2

=
∑

p1,q1∈[P1,Q1]
...

pL1
,qL−1∈[PL−1,QL−1]

∑
n63X/ lcm(p1,...,qL−1)

(ωL(n)−WL)2

� XWL

∑
p1,q1∈[P1,Q1]

...
pL1

,qL−1∈[PL−1,QL−1]

1

lcm(p1, . . . , qL−1)

�K XWL

∏
k6L−1

W 2
k .

This follows since the value of ωL(n) is unaffected by primes in the other ranges, and by the
Turán–Kubilius inequality. For the final inequality we split into cases according to which of
the primes are equal or not.The bound∑

n6X

∏
k6L−1

ωk(n)2 �K X
∏

k6L−1

W 2
k

may be proved in the same way.
Therefore, by Cauchy–Schwarz, we have

2X∫
X

∣∣∣ ∑
x<n6x+H

f(n)
( K∏
k=1

ωk(n)−
K∏
k=1

Wk

)∣∣∣2 dx
�K

∑
L6K

( K∏
k=L+1

W 2
k

) 2X∫
X

∑
x<n6x+H
x<m6x+H

( ∏
k6L−1

ωk(n)
)
|ωL(n)−WL|

( ∏
k6L−1

ωk(m)
)
|ωL(m)−WL| dx

�K H
∑
L6K

( K∏
k=L+1

W 2
k

) ∑
n,m63X
|n−m|6H

( ∏
k6L−1

ωk(n)
)
|ωL(n)−WL|

( ∏
k6L−1

ωk(m)
)
|ωL(m)−WL| dx

� H2
∑
L6K

( K∏
k=L+1

W 2
k

) ∑
n63X

( ∏
k6L−1

ωk(n)2
)

(ωL(n)−WL)2

� XH2
∑
L6K

WL

∏
k6K
k 6=L

W 2
k .

So,

2X∫
X

∣∣∣ ∑
x<n6x+H

f(n)
∣∣∣2 dx� ( K∏

k=1

Wk

)−2
2X∫
X

∣∣∣ ∑
x<n6x+H

f(n)
K∏
k=1

ωk(n)
∣∣∣2 dx+OK

(
XH2

(∑
L6K

W−1
L

))
.

From our previous bounds we get∑
L6K

W−1
L �

∑
L6K

1

logL+2(X)
= oK(1).
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So the error term is acceptable, and our gaze moves to bounding the term

2X∫
X

∣∣∣ ∑
x<n6x+H

f(n)
K∏
k=1

ωk(n)
∣∣∣2 dx.

We are going to define a Dirichlet polynomial A(t) =
∑

n a(n)nit for which a(n) =
f(n)

∏
k6K ωk(n) for n ∈ (X, 2X], but where A(t) admits a useful factorisation. To do

this, let us introduce some dyadic scales into proceedings. For k 6 K and for j in the range

1 6 j 6 log(Qk/Pk)
log 2

, we let P
(j)
k := 2j−1Pj, and P(j)

k denote the primes in the closed interval

[P
(j)
k , 2P

(j)
k ]. For simplicity, we write Jk := log(Qk/Pk)

log 2
∈ N.

Then, let

A(t) =
∑
j16J1
...

jK6JK

( K∏
k=1

∑
p∈P(jk)

k

f(p)pit
)( ∑

m∈Ij1,...,jK

f(m)mit
)
,

where m ∈ Ij1,...,jK if

X

2K
∏

k6K P
(jk)
k

6 m 6
4X∏

k6K P
(jk)
k

.

Then A(t) =
∑

n a(n)nit, where a(n) is supported on [X/2K , X2K+2], as promised we have
a(n) = f(n)

∏
k6K ωk(n) for all n ∈ [X, 4X), and furthermore |a(n)| 6

∏
k6K ωk(n) for all n.

So, by an adaptation of Lemma 11.2 (adapted to functions supported on [X/2K , X2K+2]),
we have

1

X

2X∫
X

∣∣∣ 1

H

∑
x<n6x+H

f(n)
K∏
k=1

ωk(n)
∣∣∣2 dx�K

∞∫
−∞

|A(t)|2 min
( 1

X2
,

1

t2H2

)
dt+ oK(1).

(NB the reason we arrange for a(n) = f(n)
∏

k6K ωk(n) for n ∈ [X, 4X) rather than
n ∈ [X, 2X) is simply to avoid a slight technicality regarding the fact that n can be as
large as 2X +H on the left-hand side.)

First we dispose of the portion of the integral with large t. Indeed, let θ = θ(X)→∞ as
X →∞. Then from Montgomery’s mean value theorem (after splitting into dyadic ranges)
we get ∫

|t|>Xθ/H

|A(t)|2

H2t2
dt�K

1

H2

∑
l>0

H2

22lX2θ2
(2l
Xθ

H
+X)

∑
n

|a(n)|2

�
∑
l>0

1

22lX2θ2
(2l
Xθ

H
+X)

∑
n62K+2X

∏
k6K

ωk(n)2

�K

( 1

θXH
+

1

Xθ2

)
X
∏
k6K

W 2
k

This error term is acceptable. So, we are left with showing that

( ∏
k6K

W−2
k

)
·

Xθ/H∫
−Xθ/H

|A(t)|2 dt = oK(X2).
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For notation convenience we write

Dk,jk(t) :=
∑

p∈P(jk)

k

f(p)pit.

If |Dk,jk(t)|2 exhibits a strong cancellation over a particular set t ∈ T , then we will be able
to satisfactorily bound the contribution to the integral coming from those t ∈ T . Of course
for a general f ∈ M0 we know very little about the domain of cancellation T , but, by an
outrageously cunning argument of Matomäki–Radziwi l l, it turns out that we don’t need to.

Let us define a sequence of exponents ηL = (K − L+ 1)/(10K) for L 6 K. Then let

TL :=
{
t ∈ [−Xθ/H,Xθ/H] : |DL,jL(t)| 6 (P

(jL)
L )1−ηL for all jL 6 JL

and, for all l > L+ 1, |Dl,jl(t)| > (P
(jl)
l )1−ηl for some jl 6 Jl

}
and let

E := [−Xθ/H,Xθ/H] \
⋃
L6K

TL.

We have set up the scales so that |E| � X3/8, and so we have a chance of using the Halas–
Montgomery bound for the integral over E (which you recall gives non-trivial information
all the way up to X1/2−ε). It turns out that when f = λ is the Liouville function the
Halasz–Montgomery bound is enough, although for general f we will need to use a variation
of the Halasz–Montgomery bound that is adapted to Dirichlet polynomials supported on
the primes. That will be the topic of next lecture.

The rest of this lecture will be devoted to controlling the contribution from t ∈ TL, starting
with some manipulations to reduce matters to a single dyadic scale. Indeed,

|A(t)|2

=
∣∣∣ ∑
j16J1
...

jK6JK

( K∏
k=L

1

logP
(jk)
k

)( K∏
k=L

logP
(jk)
k

)( K∏
k=1

Dk,jk(t)
)( ∑

m∈Ij1,...,jK

f(m)mit
)∣∣∣2

�K

( ∑
jL6JL
...

jK6JK

K∏
k=L

1

logP
(jk)
k

) ∑
jL6JL
...

jK6JK

( K∏
k=L

logP
(jk)
k

)∣∣∣ ∑
j16J1
...

jL−16JL−1

( K∏
k=1

Dk,jk(t)
) ∑
m∈Ij1,...,jK

f(m)mit
∣∣∣2

Now, because of our choices of parameters, we always have∑
jk6Jk

1

logP
(jk)
k

=
∑

jk6
log(Qk/Pk)

log 2

1

jk log 2 + logPk
� log logQk − log logPk � Wk.

Using these decompositions on the range t ∈ TL, we get( ∏
k6K

W−2
k

)
·
∫

t∈TL

|A(t)|2 dt�K

( L−1∏
k=1

W−2
k

)( K∏
k=L

W−1
k

) ∑
jL6JL
...

jK6JK

( K∏
k=L

1

logP
(jk)
k

)
CjL,...,jK

�K

( L−1∏
k=1

W−2
k

)
max
jL,...,jK

CjL,...,jK
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where

CjL,...,jK =( K∏
k=L

(logP
(jk)
k )2

) ∫
t∈TL

( K∏
k=L

|Dk,jk(t)|2
)∣∣∣ ∑

j16J1
...

jL−16JL−1

( L−1∏
k=1

Dk,jk(t)
) ∑
m∈Ij1,...,jK

f(m)mit
∣∣∣2 dt.

We have to show that ( L−1∏
k=1

W−2
k

)
CjL,...,jK = oK(X2)

(for all choices of jL, . . . , jK). Just for a quick sanity check, note that the length of the
Dirichlet polynomial( K∏

k=L

Dk,jk(t)
) ∑

j16J1
...

jL−16JL−1

( L−1∏
k=1

Dk,jk(t)
) ∑
m∈Ij1,...,jK

f(m)mit

is �K X.

The case L = K
The contribution from TK can be bounded by a simple direct argument. Indeed,

CjK = (logP
(jK)
K )2

∫
t∈TK

|DK,jK (t)|2
∣∣∣ ∑

j16J1
...

jK−16JK−1

(K−1∏
k=1

Dk,jk(t)
) ∑
m∈Ij1,...,jK

f(m)mit
∣∣∣2 dt

� (logP
(jK)
K )2(P

(jK)
K )2−2ηK

Xθ/H∫
−Xθ/H

∣∣∣ ∑
j16J1
...

jK−16JK−1

(K−1∏
k=1

Dk,jk(t)
) ∑
m∈Ij1,...,jK

f(m)mit
∣∣∣2 dt

The integral is the L2 mean value of a Dirichlet polynomial of length �K X/P
(jK)
K and

with coefficients c(n) satisfying |c(n)| 6
∏

16k6K−1 ωk(n). So by Montgomery’s mean value
theorem we have an overall bound of

�K (logP
(jK)
K )2(P

(jK)
K )2−2ηK

(Xθ
H

+
X

P
(jK)
K

) ∑
n�KX/P

(jK )

K

K−1∏
k=1

ωk(n)2

�K

(K−1∏
k=1

W 2
k

)
(P

(jK)
K )2−2ηK+o(1)

(Xθ
H

+
X

P
(jK)
K

) X

P
(jK)
K

�K

(K−1∏
k=1

W 2
k

)
X2
(
θH−1(P

(jK)
K )1− 1

5K
+o(1) + (P

(jK)
K )−

1
5K

+o(1)
)

which is acceptable if θ grows slowly enough, since P
(jK)
K 6 QK � H. Note that we have

some. but not too much, flexibility in how to choose this lowest scale, in the sense that it is
very important that QK is not too much larger than H.

The case 1 6 L 6 K − 1
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So how on earth do we deal with the larger scales P
(jL)
L (i.e. the scales with smaller L)?

The issue is that the Dirichlet polynomial∑
j16J1
...

jL−16JL−1

( L−1∏
k=1

Dk,jk(t)
) ∑
m∈Ij1,...,jK

f(m)mit (9)

has length �K X/
K∏
k=L

P
(jk)
k , and this is too small for the Montgomery mean value theorem

to give us an adequate bound, in the manner that it did above. The trick is to use the
fact that we know that for all k in the range L + 1 6 k 6 K there exists some scale j′k
for which |Dk,j′k

(t)| is large. This will enable us to replace the Dirichlet polynomial with a
longer Dirichlet polynomial, on which Montgomery’s mean value theorem will be effective.
Actually, it will be enough just to use this fact for k = L+ 1.

Indeed, from trivial bounds we have

CjL,...,jK =( K∏
k=L

(logP
(jk)
k )2

) ∫
t∈TL

( K∏
k=L

|Dk,jk(t)|2
)∣∣∣ ∑

j16J1
...

jL−16JL−1

( L−1∏
k=1

Dk,jk(t)
) ∑
m∈Ij1,...,jK

f(m)mit
∣∣∣2 dt

� (P
(jL)
L )2−2ηL+o(1)

∫
t∈TL

∣∣∣ ∑
j16J1
...

jL−16JL−1

( L−1∏
k=1

Dk,jk(t)
) ∑
m∈Ij1,...,jK

f(m)mit
∣∣∣2 dt.

We know that for all t ∈ TL there exists a scale j′L+1 for which |DL+1,j′L+1
(t)| > (P

(j′L+1)

L+1 )1−ηL+1 .

Decomposing TL according to which scale j′L+1 occurs, and using the fact that JL+1 �
(P

(jL)
L )o(1), we may bound CjL,...,jK above by

�K (P
(jL)
L )2−2ηL+o(1)

∫
t∈TL,′

∣∣∣ ∑
j16J1
...

jL−16JL−1

( L−1∏
k=1

Dk,jk(t)
) ∑
m∈Ij1,...,jK

f(m)mit
∣∣∣2 dt

where TL,′ ⊂ TL is the subset corresponding to a particular choice of scale j′L+1.
By assumption, we therefore have the upper bound of

�K (P
(jL)
L )2−2ηL+o(1)((P

(j′L+1)

L+1 )−2+2ηL+1)d

Xθ/H∫
−Xθ/H

|DL+1,j′L+1
(t)|2d

∣∣∣ ∑
j16J1
...

jL−16JL−1

( L−1∏
k=1

Dk,jk(t)
) ∑
m∈Ij1,...,jK

f(m)mit
∣∣∣2 dt

for any d ∈ N. Choose

d =
⌈ logP

(jL)
L

logP
(j′L+1)

L+1

⌉
,

in order to make DL+1,j′L+1
(t)d have length ≈ P

(jL)
L , and therefore the entire Dirichlet poly-

nomial to have length ≈ X.
What remains is some sweat to estimate all of these various terms. This is a common

theme in complicated analytic number theory proofs; one proceeds via heuristic arguments
based on intuition and some simpler cases (i.e. roughly what you want the lengths of the
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relevant Dirichlet polynomials to be), but then in the end there is no substitute for crunch-
ing the precise estimates.

We know that the coefficients c(n) of the Dirichlet polynomial∑
j16J1
...

jL−16JL−1

( L−1∏
k=1

Dk,jk(t)
) ∑
m∈Ij1,...,jK

f(m)mit

satisfy the bound |c(n)| 6
∏

k6L−1 ωk(n), and are supported on a range n�K X/
∏

L6k6K P
(jk)
k .

So, by Montgomery’s mean value theorem, we get that

Xθ/H∫
−Xθ/H

|DL+1,j′L+1
(t)|2d

∣∣∣ ∑
j16J1
...

jL−16JL−1

( L−1∏
k=1

Dk,jk(t)
) ∑
m∈Ij1,...,jK

f(m)mit
∣∣∣2 dt

is

�K

( (P
(j′L+1)

L+1 )dX∏
L6k6K P

(jk)
k

+
Xθ

H

)∑
n>1

∣∣∣ ∗∑
p1···pdm=n

∏
k6L−1

ωk(m)
∣∣∣2

where the sum
∑∗ is over each pi ∈ P

(j′L+1)

L+1 and m in some range

X∏
L6k6K P

(jk)
k

�K m�K
X∏

L6k6K P
(jk)
k

.

(Note how I’ve relabelled the summation variable m.)
This summation is

�K

∑
p1,...,pd∈P

(j′L+1)

L+1

q1,...,qd∈P
(j′L+1)

L+1

∑
n

p1...pd|n
q1...qd|n

∏
k6L−1

ωk(n/(p1 . . . pd))ωk(n/(q1 . . . qd)),

where the range of n summation is

n�K

(P
(j′L+1)

L+1 )dX∏
L6k6K P

(jk)
k

.

Because the primes in P(j′L−1)

L−1 have no affect on the value of ωk(n) for k 6= L− 1, the above
is

�K

∑
p1,...,pd∈P

(j′L−1)

L−1

q1,...,qd∈P
(j′L−1)

L−1

∑
n

p1...pd|n
q1...qd|n

∏
k6L−1

ωk(n)2.

The contribution when {p1, . . . , pd} ∩ {q1, . . . , qd} = ∅ is

�K

( ∏
k6L−1

W 2
k

) (P
(j′L+1)

L+1 )dX∏
L6k6K P

(jk)
k

( ∑
p∈P

(j′
L+1

)

L+1

1

p

)2d

�
( ∏
k6L−1

W 2
k

) (P
(j′L+1)

L+1 )dX∏
L6k6K P

(jk)
k

since ∑
p∈P

(j′
L−1

)

L−1

1

p
6 1
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as P(j′L−1)

L−1 is a dyadic range. Bounding the contributions when {p1, . . . , pd}∩{q1, . . . , qd} 6= ∅
similarly, we are left with a bound of

�K dO(d)
( ∏
k6L−1

W 2
k

) (P
(j′L+1)

L+1 )dX∏
L6k6K P

(jk)
k

.

Bringing everything together, we get that the mean value of the Dirichlet polynomial
under consideration is

�K dO(d)
( ∏
k6L−1

W 2
k

)( (P
(j′L+1)

L+1 )dX∏
L6k6K P

(jk)
k

+
Xθ

H

) (P
(j′L+1)

L+1 )dX∏
L6k6K P

(jk)
k

so overall we have( L−1∏
k=1

W−2
k

)
CjL,...,jK

�K dO(d)(P
(jL)
L )2−2ηL+o(1)((P

(j′L+1)

L+1 )−2+2ηL+1)d
( (P

(j′L+1)

L+1 )dX∏
L6k6K P

(jk)
k

+
Xθ

H

) (P
(j′L+1)

L+1 )dX∏
L6k6K P

(jk)
k

.

By the choice of d, we may upper bound this by X2 times

�K dO(d)(P
(jL)
L )2−2ηL+o(1)((P

(j′L+1)

L+1 )−2+2ηL+1)d(P
(j′L+1)

L+1 )2

�K dO(d)(P
(jL)
L )−2ηL+2ηL+1+o(1)(P

(j′L+1)

L+1 )O(1)

�K dO(d)(P
(jL)
L )−

1
100KQ

O(1)
L+1 .

The right-hand side needs to be oK(1).
Finally (!) we get to use the explicit form of the scales [Pk, Qk] that we defined towards

the start of the lecture. This means that

d� logP
(jL)
L

logPL+1

� logP
(jL)
L

logL+2(X)2

and
log d� log logQL − log logPL+1 � logL+2(X),

and so

dO(d) � exp(O(d log d))� exp
(
O
( logP

(jL)
L

logL+2(X)

))
� (P

(jL)
L )oK(1).

Since Q
O(1)
L+1 = (P

(jL)
L )oK(1) as well, we are left with an overall bound of OK((P

(jL)
L )−

1
200K ),

which is oK(1) and is therefore acceptable. Phew!

So all that remains is to control the integral over the small exceptional set E . That will
be the topic of next lecture.
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14. Endgame

Today we will will finish the proof of the Matomäki–Radziwi l l theorem (well, at least
when H > logK(X) for some fixed K). Actually, preparing the detailed notes for this
lecture, I’ve realised that to give a full proof it will actually be necessary to restrict matters
to the case in which the multiplicative function in question is the Liouville function λ. At
the end I will indicate the ideas that go into generalising matters to arbitrary multiplicative
functions, in some (but not total) detail.

There is comparatively little left to do, given the complications that have come our way
thus far. However, we will nonetheless need to rely on some further deep estimates, given
below. Here, π(y) :=

∑
p6y 1 (which is a standard notation that somehow I have managed

to avoid introducing up until now).

Theorem 14.1 (Vinogradov–Korobov bounds). For any δ > 0, and for all y > 2 and t ∈ R,
we have ∑

n6y

λ(n)nit �δ y exp
(
− log y

(log(y + |t|)) 2
3

+δ

)
,

∑
p6y

pit �δ
π(y)

1 + |t|
+ y exp

(
− log y

(log(y + |t|)) 2
3

+δ

)
,

and ∑
p6y

(
1− p

y

)
pit �δ

π(y)

1 + |t|2
+ y exp

(
− log y

(log(y + |t|)) 2
3

+δ

)
.

I’m afraid that I won’t have time to prove these bounds. In fact we’re at least three
lectures short on time for this, and the techniques would take us dramatically far afield
from our central task. So, in lieu of a proof, I can give you:

• some contextual remarks, to help you appreciate the strength of these estimates in
comparison to what we have proved before this point;
• a sketch proof using complex analytic methods, assuming a suitable zeros free region.

First the contextual remarks. The bounds are non-trivial for |t| as large as exp((log y)3/2−δ),
which is significantly larger than y. The prime number theorem with classical error term
(the state of the art at the start of the 20th century) does not yield anything non-trivial for
|t| � y.

Here’s another perspective. Recall that back in Lecture 3 we showed that

|ζ(1 +
1

log y
+ it)| � log(|t|+ 2),

and thereby demonstrated the lower bound

D(1, nit; y)2 > log log y − log log(|t|+ 2)−O(1)

when |t| > 1. Well this lemma also becomes trivial once |t| > y. However, a deep result
of Vinogradov–Korobov from the middle of the last century (discovered independently in
1958, but building on previous work of Vinogradov), improves the zeta bound to

|ζ(σ + it)| � (log |t|)2/3(log log |t|)1/3

if σ > 1− c(log |t|)−2/3(log log |t|)−1/3 for some absolute c > 0. This is still the best known
exponent, and leads to the bound

D(1, nit; y)2 � log log y, |t| 6 exp((log y)1.4)),

say.
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Now, the Vinogradov–Korobov bound is based on an exponential sum estimate on the
short interval sum

∑
N6n6N+M nit. After some Taylor expansion and bilinear sum tech-

niques, one can prove highly non-trivial bounds on this exponential sum by bounding the
number of solutions to the system of equations

x1 + . . . xs = xs+1 + · · ·+ x2s

x2
1 + . . . x2

s = x2
s+1 + · · ·+ x2

2s

. . . . . .

xk1 + . . . xks = xks+1 + · · ·+ xk2s

with 1 6 xi 6 X for all i 6 k, for certain parameters k and s. Non-trivial bounds to the
number of such solutions are known as ‘Vinogradov’s mean value theorem’, and are a whole
world in and of themselves. If you’re interested, have a look at the second half of Chapter 8
of Iwaniec–Kowalski ‘Analytic Number Theory’. Or if you’re really interested, then you can
look at the spectacular recent literature by Wooley and by Bourgain–Demeter–Guth (ask
me for specific references if you want them).

Coming back down to earth, let me sketch how to use the zero-free region to establish
some of the bounds in Theorem 14.1. [This will only make any sort of sense if you have
attended a first course in analytic number theory.] Let me stress that it is not necessary to
use Cauchy’s Theorem to prove bounds of this strength. However, formulating such a proof
is not easy, and wasn’t worked out until Dimitris Koukoulopoulos did it in 2013.

Sketch proof. By Perron’s formula one has

∑
n6y

λ(n)nit =
1

2πi

1+1/ log y+iy∫
1+1/ log y−iy

ζ(2w − 2it)

ζ(w − it)
yw

w
dw +Oε(y

ε).

Now move the line of integration to <(w) = 1− (log(y+ |t|))−2/3−δ, picking up no contribu-
tions from any zeros (by the Vinogradov–Korobov zero free region), and use known upper
bounds on ζ and ζ−1 in this region.

For the other sums, apply Perron to the function F in order to obtain

∑
n6y

F (n/y)Λ(n)nit =
−1

2πi

1+1/ log y+iy∫
1+1/ log y−iy

ζ ′(w − it)
ζ(w − it)

ywF̃ (w)dw +Oε(y
ε),

where F̃ (w) is the Mellin transform of F , and do the same thing. (If F (x) = 1[0,1](x) we

get F̃ (w) = w−1, whereas if F (x) = (1 − |x|) when |x| 6 1 and F (x) = 0 otherwise we get

F̃ (w) = (w(w + 1))−1.) This time we pick up a pole at w = 1 + it. �

The third bound in this theorem is clearly closely related to the bound we spent a long time
considering in Lecture 11, namely∑

n62N

(
2− n

N

)
nit � N

1 + |t|2
+ (1 + |t|)1/2 log(2 + |t|).

Let’s remind ourselves where we are in our general effort. We were proving Matomäki–
Radziwi l l for the function H = exp((logK+1(X)3), where K was large and fixed. Last time,
we reduced matters to the bound( ∏

k6K

W−2
k

) Xθ/H∫
−Xθ/H

|A(t)|2 dt = oK(X2),
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where θ = θ(X) was any function tending to infinity with X, and A(t) was a complicated
Dirichlet polynomial of length ≈ X built out of a factorisation according to the scales
[P1, Q1], . . . , [PK , QK ] and a further dyadic decomposition, and Wk ≈ log logQk− log logPk.
In detail,

A(t) =
∑
j16J1
...

jK6JK

( K∏
k=1

∑
p∈P(jk)

k

f(p)pit
)( ∑

m∈Ij1,...,jK

f(m)mit
)
,

where m ∈ Ij1,...,jK if
X

2K
∏

k6K P
(jk)
k

6 m 6
4X∏

k6K P
(jk)
k

,

and Jk = logQk
(log 2)(logPk)

, P
(jk)
k := 2jk−1Pk and P(jk)

k is the set of all primes in the interval

[P
(jk)
k , 2P

(jk)
k ).

We split the range of integration [−Xθ/H,Xθ/H] into different sets T1, . . . , TK and E ,
according to whether the Dirichlet polynomials

Dk,jk(t) :=
∑

p∈P(jk)

k

f(p)pit

were small or large. Using Montgomery’s mean value theorem, together with an ingenious
‘Dirichlet polynomial lengthening’ device, we controlled the contribution from T1, . . . , TK .

What remains is to control the contribution over E . An important first step will be to
determine an upper-bound on |E|. It turns out that Montgomery’s mean value theorem will
be adequate.

Lemma 14.2. Let 2 6 P 6 T . Let c(p) be any sequence of complex numbers, defined on
primes p, with |c(p)| 6 1. Let V > 3 be a real number and let T denote the set of values
|t| 6 T such that |

∑
p6P c(p)p

it| > π(P )/V . Then

|T | � (V 2 log T )1+(log T )/(logP ).

Proof. Let k = d(log T )/(logP )e so that P k > T . Write(∑
p6P

c(p)pit
)k

=
∑
n6Pk

ck(n)nit.

Note that |ck(n)| 6 k! and that∑
n6Pk

|ck(n)| 6
(∑
p6P

|c(p)|
)k
6 π(P )k.

Therefore, from Montgomery’s mean value theorem, we have

|T |
(π(P )

V

)2k

6

T∫
−T

∣∣∣∑
p6P

c(p)pit
∣∣∣2k dt� (T + P k)

∑
n6Pk

|ck(n)|2 � k!P kπ(P )k.

What remains is some explicit estimation of the various terms. Observe that the claimed
bound in the lemma is trivial if T = O(1), and similarly is also trivial if P = O(1) (as
the claimed bound is weaker than the trivial |T | � T ). Therefore we may assume that
P/π(P ) 6 2 logP . From Stirling’s Theorem (or otherwise) we get k! � ((k − 1)/2)k.
Therefore

|T | � V 2kk!(2 logP )k � V 2k
( log T

2 logP

)k
(2 logP )k � (V 2 log T )k,

and this gives the lemma. �
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The point about the choice of k is that it makes the length of the Dirichlet polynomial
essentially equal to the length of integration, which is range where Montgomery’s estimate
is most powerful.

Let us apply this lemma to our exceptional set E from our main estimation. If t ∈ E
we know that there is some j1 6 J1 for which |D1,j1(t)| > (P

(j1)
1 )1−η1 = (P

(j1)
1 )9/10. By the

previous lemma, the measure of such t is

� ((P
(j1)
1 )

2
10 log(Xθ/H))1+(log(Xθ/H))/(logP

(j1)
1 )

� exp(
2

10
logX +

2

10
logQ1 + logX

log logX

logP1

)

� exp(
2

10
logX +

2

10
(log logX)3 +

logX

log logX
)

� X
2
10

+o(1).

Multiplying by J1, which is � log logX, we we obtain

|E| � X
1
4 ,

say. Notice how we have relied greatly on the fact that (logP1)/(log logX)→∞ as X →∞,
so we could not have applied such an argument to Pk for any k > 2.

Now, the Halasz–Montgomery mean value theorem gives∫
t∈E

|A(t)|2 dt�K (X + |E|X1/2 logX)
∑
n

|a(n)|2 �K (X +X3/4+o(1))X
∏
k6K

W 2
k

since |a(n)| 6
∏

k6K ωk(n). Of course this doesn’t actually give us the necessary bound of

oK(X2
∏

k6KW
2
k ). But we’re nearly there, and the term coming from ‘average behaviour’

over t, namely the second term, is acceptable. This is good news.

In order to improve the ‘L∞ part’ of the mean value estimate, like before we are going to
employ a prime decomposition. Define the interval [P0, Q

′
0] by

P0 = exp((logX)0.9), Q′0 = exp((logX)0.95)

and then as before we let Q0 be equal to 2J0+1P0 for some J0 ∈ N such that Q0/Q
′
0 � 1.

The interval [P0, Q0] is still contained within [1, X], but is substantially larger than any of
the previous intervals [Pk, Qk].

Now I am going to be a little naughty: I am going to ‘redefine’ the Dirichlet polynomial
A(t). This is because the cleanest way to use this final scale in the proof is actually to
introduce it right at the beginning, and carrying through the entirety of the arguments
last time regarding D1, . . . , Dk without alteration. I felt that introducing [P0, Q0] last time
(which has a different role to [Pk, Qk] for k > 1) would have been exceptionally confusing,
which is why I didn’t do it. But of course you might legitimately complain that arranging
matters this way is in itself confusing!

We define

B(t) =
∑
j06J0
...

jK6JK

( K∏
k=0

∑
p∈P(jk)

k

f(p)pit
)( ∑

m∈I′j0,...,jK

f(m)mit
)
,

where m ∈ I ′j0,...,jK if

X

2K+1
∏

06k6K P
(jk)
k

6 m 6
4X∏

06k6K P
(jk)
k

,

and we will work with B(t) in lieu of A(t).
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By the same argument as last time one derives

1

X

2X∫
X

∣∣∣ 1

H

∑
x6n<x+H

f(n)
∣∣∣2 dx� ( K∏

k=0

W−2
k

) 1

X2

Xθ/H∫
−Xθ/H

|B(t)|2 dt+ oK(1).

One can define the sets T1, . . . , TK identically as before, and bound their contribution. Our
task is reduced to showing that( K∏

k=0

W−2
k

) 1

X2

∫
E

|B(t)|2 dt = oK(1), (10)

where E is an arbitrary measurable set of measure |E| � X1/4.
In a by-now familiar manoeuvre (in the sense as it’s the same as we did last time), we

arrange a dyadic decomposition on scale j0 6 J0 to obtain∫
E

|B(t)|2 dt 6 W 2
0 max
j06J0

Cj0 , .

Here

Cj0 := (logP
(j0)
0 )2

∫
E

∣∣∣ ∑
p∈P(j0)

0

f(p)pit
∣∣∣2|M(t)|2 dt,

where

M(t) :=
∑
j16J1
...

jK6JK

( K∏
k=1

∑
p∈P(jk)

k

f(p)pit
)( ∑

m∈I′j0,...,jK

f(m)mit
)

is a Dirichlet polynomial of length �K X/P
(j0)
0 and whose coefficients m(n) satisfy |m(n)| 6∏

16k6K ωk(n).

Using the tools that we have introduced so far, we may prove our main theorem in the
case where f = λ is the Liouville function. In this instance, the second bound of Theorem
14.1 implies that∑

p∈P(j0)
0

pit � P
(j0)
0

logP
(j0)
0

1

1 + |t|
+ P

(j0)
0 exp

(
− logP

(j0)
0

(log(P
(j0)
0 + |t|))2/3+δ

)

� P
(j0)
0

logP
(j0)
0

( 1

1 + |t|
+ exp(−(logX)0.1)

)
when |t| 6 X. (Note that it is important that P0 > exp((logX)2/3)). So, from applying the
Halasz–Montgomery bound to the Dirichlet polynomial M(t) we obtain∫

t∈E
|t|>(logX)

∣∣∣ ∑
p∈P (j0)

0

pit
∣∣∣2|M(t)|2 dt

�K
(P

(j0)
0 )2

(logP
(j0)
0 )2(logX)2

( X

P
(j0)
0

+ |E|X1/2(logX)
)∑

n

|m(n)|2

�K
(P

(j0)
0 )2

(logP
(j0)
0 )2(logX)2

( X

P
(j0)
0

+X3/4+o(1)
)( X

P
(j0)
0

∏
16k6K

W 2
k

)
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�K
X2

(logP
(j0)
0 )2(logX)2

∏
16k6K

W 2
k .

So the contribution to Cj0 from |t| > logX is at most X2

(logX)2

∏
16k6KW

2
k , which is acceptable

as logX →∞ as X →∞.
For |t| 6 logX, we can use the first part of Theorem 14.1 to show that for all j0 6

J0, . . . , jK 6 JK we have∣∣∣ ∑
m∈I′j0,...,jK

λ(m)mit
∣∣∣�K

X∏
06k6K

P
(jk)
k

exp(−(logX)0.1),

since
∏

06k6K P
(jk)
k = Xo(1). Summing over the dyadic scales, we obtain

|M(t)| �K
X

P
(j0)
0

exp(−(logX)0.05)

in the same range. Thus

(logP
(j0)
0 )2

∫
|t|6logX

∣∣∣ ∑
p∈P(j0)

0

f(p)pit
∣∣∣2|M(t)|2 dt

� (P
(j0)
0 )2

∫
|t|6logX

|M(t)|2 dt

� (P
(j0)
0 )2(logX)

( X

P
(j0)
0

exp(−(logX)0.1)
)2

� o(X2
∏

16k6K

W 2
k ).

So Cj0 is controlled, and we are entirely done in the case of the Liouville function �.

Addendum
But what if f is not the Liouville function? Then we really don’t know anything about

where exactly
∑

p f(p)pit is small, and in particular we can’t assume that this Dirichlet
polynomial is always small for large t. This was an important part of our argument above.

What to do? Well, if ∣∣∣ ∑
p∈P(j0)

0

f(p)pit
∣∣∣ 6 P

(j0)
0

(logP
(j0)
0 )2

,

say, then we really can conclude as in the above argument, using the Halasz-Montgomery
bound for the Dirichlet polynomial M(t). So the remaining case is when∣∣∣ ∑

p∈P(j0)
0

f(p)pit
∣∣∣ > P

(j0)
0

(logP
(j0)
0 )2

,

which we know from Lemma 14.2 occurs extremely rarely. In fact, if T is the set of such t,
then we know that

|T | � ((logP
(j0)
0 )2 logX)1+(logX)/(logP

(j0)
0 ) � exp((logX)0.11),

say.
Now, assume for the rest of today that we have some good uniformity bound regarding

how non-pretentious f is, say we know that

D(f, nit;X)2 � log logX
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for all |t| 6 X. We then appeal to a quantitative version of Halasz’s Theorem, which we
mentioned at the end of Lecture 5 (and which actually does follow easily from our Lecture
5 methods too). This would give us∣∣∣ ∑

m∈I′j0,...,jK

f(m)mit
∣∣∣�K

X
K∏
k=0

P
(jk)
k

1

(logX)δ

for some absolute constant δ > 0, provided |t| 6 X. One can reduce to this strong non-
pretentious case by removing the contribution from small |t| by another complicated device,
but we will not cover this. (One should look to Lemma 4 of the original paper of Matomäki–
Radziwi l l).

Summing over all dyadic scales, and using the fact that
∏

16k6K Jk � (logX)o(1), we
obtain the upper bound

Cj0 �K
X2(logP

(j0)
0 )2

P
(j0)
0 (logX)δ−o(1)

∫
t∈T

∣∣∣ ∑
p∈P(j0)

0

f(p)pit
∣∣∣2 dt.

A trivial bound here would give Cj0 � X2(logX)−δ+o(1)|T |, but unfortunately it is not
necessarily true that |T | � (logX)δ. We have hit a problem that we mentioned way back
in Lecture 5, namely that even an optimal version of a general Halasz’s theorem doesn’t
actually give us very strong cancellation.

An application of Halasz–Montgomery will also fail us, as this would give a bound of

X2(logP
(j0)
0 )2

P
(j0)
0 (logX)δ−o(1)

(
P

(j0)
0 + |T |X1/2 logX

) P
(j0)
0

logP
(j0)
0

,

which is too weak by a factor of logP
(j0)
0 .

The problem was that the general Halasz–Montgomery mean value theorem wasn’t sensi-
tive to the fact that the Dirichlet polynomial in question here is supported on primes, which
are sparse. However, Matomäki–Radziwi l l were able to prove a version of this mean value
theorem which regains this sparseness factor in the specific case that the coefficients are
supported on primes.

Theorem 14.3 (Halasz–Montgomery for primes). Let T > 2, let T be a measurable subset
of [−T, T ]. Then for any complex numbers c(p) and any ε > 0,∫

T

∣∣∣∑
p6P

c(p)pit
∣∣∣2 dt� ( P

logP
+ |T |P exp

(
− logP

(log(T + P ))2/3+ε

))∑
p6P

|c(p)|2.

Proof. I’ll leave this to you, but you already have all the pre-requisite material to do this
easily yourself. Follow the proof of the Halasz–Montgomery bound, but use the bound from
Theorem 14.1 on ∑

p6P

(
1− p

P

)
pit

in place of the bound on ∑
n6N

(
1− n

N

)
nit.

�
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15. Correlations of multiplicative functions

In the final two lectures of the course, we will discuss Tao’s proof of the following theorem:

Theorem 15.1. For all ε > 0, for all w large enough in terms of ε, and for all X with
X/ logX > w, we have ∣∣∣ ∑

X/w<n6X

λ(n)λ(n+ 1)

n

∣∣∣ 6 ε logw. (11)

One shouldn’t read too much into the parameter w; at certain points in the argument, it will
simply be convenient that n is not very small. Of course, Tao also proved a more general
result for all non-pretentious f ∈ M0 (in which it is necessary to preclude cases in which
D(f, χ(n)nit;X) is small, for all Dirichlet characters χ of conductor up to a certain size),
but we won’t attack the general case in these notes.

Note that the trivial bound on the left-hand side of equation (11) is logw. Letting ε tend
to 0 sufficiently slowly as X →∞, and w = X/ logX, one may conclude that∑

n6X

λ(n)λ(n+ 1)

n
= o(logX)

as X →∞.
Unlike earlier in the course, we will not be focussed on providing absolutely all of the

details of the proof of Theorem 15.1. Our focus will rather be in providing an overall flavour
of the argument (although actually we will be able to furnish almost all of the details in the
time available). Thus our exposition will fall somewhere in between a seminar-style sketch
and an undergraduate-style lecture.

Why is the twin prime conjecture is hard?
Right back in Lecture 1, I noted that there was some heuristic analogy between the

correlations λ(n)λ(n + 1) and Λ(n)Λ(n + 2). We seem to be a long way off proving that∑
n6X Λ(n)Λ(n + 2) → ∞, and I think it is worth taking 10 minutes or so to discuss why

this is so – even if only to make the achievement of understanding
∑

n6X λ(n)λ(n + 1)/n
appear all the more impressive.

There are two tools that one might try to bring to bear on the sum
∑

n6X Λ(n)Λ(n+ 2).
The first is the circle method, namely by noting that∑

n6X

Λ(n)Λ(n+ 2) =

1∫
0

∣∣∣∑
n6X

Λ(n)e(nθ)
∣∣∣2e(2θ) dθ.

One could split the interval into a union M of major arcs, when θ is close to a rational with
small denominator, and a minor arc m = [0, 1) \M, expecting that the main contribution
to the integral will come from the major arcs. [A standard major arc would be something
like

M :=
⋃

q6logAX

⋃
a6q

(a,q)=1

{
θ ∈ [0, 1) :

∣∣∣θ − a

q

∣∣∣ 6 logBX

Xq

}
,

for certain values of A and B, but there are others.] So,

1∫
0

∣∣∣∑
n6X

Λ(n)e(nθ)
∣∣∣2e(2θ) dθ =

∫
θ∈M

∣∣∣∑
n6X

Λ(n)e(nθ)
∣∣∣2e(2θ) dθ +

∫
θ∈m

∣∣∣∑
n6X

Λ(n)e(nθ)
∣∣∣2e(2θ) dθ

>
∫

θ∈M

∣∣∣∑
n6X

Λ(n)e(nθ)
∣∣∣2e(2θ) dθ − ∫

θ∈m

∣∣∣∑
n6X

Λ(n)e(nθ)
∣∣∣2 dθ
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and actually one can compute the integral over θ ∈M to give

2
∏
p>3

(
1− 1

(p− 1)2

)
X + o(X).

(Exercise.) One might hope that the integral of the absolute value over the minor arcs is
o(X). But it isn’t! One may show that by removing the e(2θ) term one ends up with a
minor arc term of size � X. So unless one can take advantage of the oscillations given by
the e(2θ) term – which seems almost impossible – a näıve circle-method approach is doomed.

Another way of trying to detect primes is by a sieve. However, as a general rule, sieves
have a hard time (a) proving lower bounds on the number of primes in a certain set (they
work better for providing upper bounds), and (b) distinguishing between numbers with an
even number of prime factors and numbers with an odd number of prime factors.

This second phenomenon is known as ‘the parity problem’. This term is overused in
the field – plenty of very clever people have (Friedlander, Iwaniec, Heath–Brown, Harman,
Goldston–Pintz–Yildrim, Green, Maynard, Tao etc.) have found ways to use sieves to detect
primes themselves, in certain situations – but there is one specific case in which one has a
more precise articulation of this parity obstruction: the linear sieve.

Consider the set A = {p + 2 : p ∈ [X/2, X]}. We want to detect primes in A. For all
(odd) square-free d 6 Xu one has ∑

n∈A
d|n

1 ≈ 1

d

∑
n∈A

1.

The linear sieve is a general tool for taking any sequence A that obeys this property, and
finding bounds for the number of ‘rough’ integers in A. Approximately speaking, it gives us
two absolute functions f and F for which

f(u)
|A|

log(Xu)
<≈

∑
n∈A

p|n⇒p>Xu

1 <≈ F (u)
|A|

log(Xu)
.

The functions f and F are defined in a somewhat complicated way, but all you need to know
is that f(u) = 0 if u > 1/2. In particular, this lower bound does not allow us to establish
the twin prime conjecture by sieving all the way up to X1/2. So the twin prime conjecture
cannot be proved by this general tool.

But the terrible thing (at least as far as proving the twin prime conjecture is concerned!)
is that these functions f and F are optimal in this generality, in the sense that if one lets

B = {n : n ∈ [X/2, X], λ(n) = −1},
then one can show using the prime number theorem that∑

n∈B
d|n

1 ≈ 1

d

∑
n∈B

1

and

f(u)
|B|

log(Xu)
≈

∑
n∈B

p|n⇒p>Xu

1.

So there is no way of improving the function f(u) in this generality.
Note that the bad case B consisted of numbers with an odd number of prime factors.

Bombieri showed back in the sixties (the Bombieri sieve) that this parity issue is, in some
precise sense, the ‘only’ obstruction here. But to describe that work would take us too far
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from our main theme.

Two preliminary results
Before starting the proof proper of Tao’s result, I need to furnish you with two preliminary

results. One is a consequence of the Matomäki–Radziwi l l theorem, and the other is a
standard large-deviation inequality from probability theory.

Theorem 15.2 (Matomäki–Radziwi l l –Tao). If H →∞ as X →∞, with H 6 X, then

sup
α∈[0,1]

2X∫
X

∣∣∣ ∑
x<n6x+H

λ(n)e(nα)
∣∣∣ dx = o(HX).

How is this proved? Well, when α = 0 one sees that this is exactly the manner of average
that we considered in the Matomäki–Radizwi l l theorem, and so cancellation follows. A
similar argument works when α is in a ‘major arc’. Indeed, observe that

2X∫
X

∣∣∣ ∑
x<n6x+H

(n,r)=1

λ(n)e(na/r)
∣∣∣ dx =

2X∫
X

∣∣∣ ∑
x<n6x+H

(n,r)=1

λ(n)
∑
b6r

e
(nb
r

) 1

ϕ(r)

∑
χ mod r

χ(a−1b)
∣∣∣ dx

=

2X∫
X

∣∣∣ 1

ϕ(r)

∑
χ mod r

∑
x<n6x+H

(n,r)=1

λ(n)χ(a)
∑
b6r

e
(nb
r

)
χ(b)

∣∣∣ dx
=

∑
χ mod r

|τ(χ)|
ϕ(r)

2X∫
X

∣∣∣ ∑
x<n6x+H

(n,r)=1

λ(n)χ(n)
∣∣∣ dx,

which (if r grows slowly enough in terms of H) can be controlled as o(HX) using Matomäki–
Radziwi l l on the function λχ. (But note that we will need the general non-pretentious
version for complex-valued multiplicative functions inM0, not just a version for real-valued
functions).

The minor arc case is dealt with by very similar bounds to the ones we used back in
Lecture 9 to deal with minor arcs in that case (albeit one needs to be rather more precise
than we were being – these techniques are due to Katai, and Bourgain–Sarnak–Ziegler).

The long-average version of this bound, namely∣∣∣∑
n6X

λ(n)e(nθ)
∣∣∣ = OA

( X

logAX

)
is due to Davenport, and is on the examples sheet.

The next pre-requisite concerns a large deviation inequality.

Theorem 15.3 (Hoeffding’s inequality). Let Z1, . . . , Zn be independent random variables
with Zi ∈ [a, b] for all i. Then

P
(∣∣∣ n∑

i=1

Zi −
n∑
i=1

E(Zi)
∣∣∣ > nt

)
6 2 exp

( −2nt2

(b− a)2

)
.

In words, this says that the sum of a sequence of independent samples is exponentially
unlikely to be far from its mean.
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One may put some more precise heuristics in here. Suppose further that the Zi were i.i.d
with mean 0 and variance 1. Then by the central limit theorem we have

P
(∣∣∣ n∑

i=1

Zi

∣∣∣ > θ
√
n
)
→ 1√

2π

∞∫
θ

exp
(
− x2

2

)
dx

as n → ∞, for every fixed θ. So, playing somewhat fast and lose with the uniformity in θ,
we might expect that

P
(∣∣∣ n∑

i=1

Zi

∣∣∣ > tn
)
≈

∞∫
t
√
n

exp
(
− x2

2

)
dx ≈ exp

(
− nt2

2

)
.

So Hoeffding’s inequality is saying that, in a rather general scenario, this quality of upper
bound on the tail can be recovered.

The proof uses Markov’s inequality, as applied to the distribution of the moment gener-
ating function. The independence assumption means that the moment generating function
E exp(t

∑
i Zi) factorises as

∏
i E exp(tZi), which is ultimately where the power of the bound

comes from.

Introducing an extra summation variable
Now let us embark upon the proof of Theorem 15.1. Let us suppose for contradiction that

for some values of the parameters we have∣∣∣ ∑
X/w<n6X

λ(n)λ(n+ 1)

n

∣∣∣ > ε logw,

where we may assume that w and X are large in terms of ε.
In a manner that we have seen countless times before, our first manoeuvre will be to use

multiplicativity to introduce a further summation variable over primes for free. We will also
use a translation trick to introduce a further summation over j ranging in a short interval.
(This idea goes back at least to van der Corput in the 1920s).

Let H− 6 H+ be two scales, with H− large enough in terms of ε (but H+ much smaller
than both w and X).

Lemma 15.4. For any H ∈ [H−, H+], let PH denote the set of primes between ε2

2
H and

ε2H. Then ∣∣∣ ∑
X/w<n6X

∑
p∈PH

∑
j

j,j+p∈[1,H]

λ(n+ j)λ(n+ j + p)

n
1p|n+j

∣∣∣� ε
H

logH
logw.

Proof. For all p ∈ PH we have∑
X/w<n6X

λ(n)λ(n+ 1)

n
=

∑
X/w<n6X

λ(p)λ(n)λ(p)λ(n+ 1)

n

=
∑

X/w<n6X

λ(pn)λ(pn+ p)

n

= O(log p) +
∑

X/pw<n6X/p

λ(pn)λ(pn+ p)

n

= O(log p) + p
∑

X/w<m6X

λ(m)λ(m+ p)

m
1p|m.
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Note the crucial use of the logarithmic averaging here, to replace the range X/w < n 6 X
with X/pw < n 6 X/p with limited loss.

Thus, ∑
X/w<m6X

λ(m)λ(m+ p)

m
1p|m =

C

p
−O

( log p

p

)
,

where |C| > ε logw. Now, for any j such that j ∈ [1, H] and j + p ∈ [1, H], we have∑
X/w<m6X

λ(m)λ(m+ p)

m
1p|m =

∑
X/w<m+j6X

λ(m+ j)λ(m+ j + p)

m+ j
1p|m+j

=
∑

X/w<m6X

λ(m+ j)λ(m+ j + p)

m
1p|m+j +O

(Hw
X

)
.

Hence∑
X/w<n6X

∑
p∈PH

∑
j

j,j+p∈[1,H]

λ(n+ j)λ(n+ j + p)

n
1p|n+j

= H(1 +O(ε2))
∑
p∈PH

C

p
−O

(
H
∑
p∈PH

log p

p

)
− oX→∞(1),

which implies the lemma since ∑
p∈PH

1

p
� 1

logH
.

�

Consider ∑
X/w<n6X

∑
p∈PH

∑
j

j,j+p∈[1,H]

λ(n+ j)λ(n+ j + p)

n
1p|n+j

from the statement of the previous lemma. What would happen if we were to replace the
worryingly singular expression 1p|n+j with its ‘average value’ over n, namely 1/p? It turns
out that this expression we can handled by our knowledge of λ in almost-all short intervals.

Lemma 15.5. ∑
X/w<n6X

∑
p∈PH

∑
j

j,j+p∈[1,H]

λ(n+ j)λ(n+ j + p)

pn
� ε2 H

logH
logw.

Proof. One may verify the identity

H
∑
r6H

e
(
− rp

H

)∣∣∣ 1

H

∑
j6H

λ(n+ j)e
(
− jr

H

)∣∣∣2 =
∑

j1,j26H

λ(n+ j1)λ(n+ j2)1j2≡j1+p mod H

=
∑
j

j,j+p∈[1,H]

λ(n+ j)λ(n+ j + p) +O(ε2H).

This error will be acceptable, and so we are reduced to showing that

(logH)
∑

X/w<n6X

1

n

∑
p∈PH

1

p

∑
r6H

e
(
− rp

H

)∣∣∣ 1

H

∑
j6H

λ(n+ j)e
(
− jr

H

)∣∣∣2 � ε2 logw.

Swapping orders of summation, we seek to bound

(logH)
∑
r6H

∣∣∣ ∑
p∈PH

1

p
e
(
− rp

H

)∣∣∣ ∑
X/w<n6X

1

n

∣∣∣ 1

H

∑
j6H

λ(n+ j)e
(
− jr

H

)∣∣∣2.
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Let RH be the set of r 6 H for which∣∣∣ ∑
p∈PH

1

p
e
(
− rp

H

)∣∣∣ > ε2

logH
.

We conclude that the contribution from r /∈ RH is

6 ε2
∑

X/w<n6X

1

n

∑
r6H

∣∣∣ 1

H

∑
j6H

λ(n+ j)e
(
− jr

H

)∣∣∣2 6 ε2 logw

by Parseval. The contribution from r ∈ RH is at most

�
∑
r∈RH

∑
X/w<n6X

1

n

∣∣∣ 1

H

∑
j6H

λ(n+ j)e
(
− jr

H

)∣∣∣2 = o(|RH | logw)

by the result of Matomäki–Radziwi l l–Tao mentioned earlier (splitting m into dyadic ranges
and using the phase α = r/H). This is where it is convenient that we have assumed that n
is never small.

It suffices to show that |RH | �ε 1. There are various ways to show this, but the most
direct and low-tech is to note that∑

r6H

∣∣∣ ∑
p∈PH

1

p
e
(
− rp

H

)∣∣∣4 = H
∑

p1,p2,p3,p4∈PH

1

p1p2p3p4

1H|(p1+p2−p3−p4).

Because pi 6 ε2H, and ε is small, we note that p1 + p2 = p3 + p4. Using the sieve or the
circle method one can upper bound the number of solutions to give

|RH |
( ε2

logH

)4

6
∑
r6H

∣∣∣ ∑
p∈PH

1

p
e
(
− rp

H

)∣∣∣4 � 1

ε2(logH)4
.

So
|RH | �ε 1

as required. The lemma follows. �
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16. Lecture 16: The ‘entropy decrement argument’

To summarise where we are currently at in the proof, we have parameters

ε−1 ≪ H− 6 H 6 H+ ≪ w 6
X

logX
,

and our aim is to find some nontrivial upper bound on∑
X/w<n6X

∑
p∈PH

∑
j

j,j+p∈[1,H]

λ(n+ j)λ(n+ j + p)

n
1p|n+j,

where the trivial upper bound is H
logH

logw. (Here PH is the set of primes between (ε2/2)H

and ε2H.) We have shown that∑
X/w<n6X

∑
p∈PH

∑
j

j,j+p∈[1,H]

λ(n+ j)λ(n+ j + p)

pn
� ε2 H

logH
logw,

so it suffices to prove a bound on∑
X/w<n6X

∑
p∈PH

∑
j

j,j+p∈[1,H]

λ(n+ j)λ(n+ j + p)

n

(
1p|n+j −

1

p

)
.

At this point, we are going to find it useful to introduce probabilistic language and nota-
tion. All the manipulations to follow could be done by writing out the explicit sums instead,
but the resulting expressions would be exceedingly complicated to write down.

We treat the variable n as a random variable n, distributed according to

P(n = n) =


1
n

( ∑
X/w<m6X

1
m

)−1

if n ∈ (X/w,X]

0 otherwise.

The task is then to prove a bound such as∣∣∣E ∑
p∈PH

∑
j

j,j+p∈[1,H]

λ(n + j)λ(n + j + p)
(

1p|n+j −
1

p

)∣∣∣ 6 ε2 H

logH
.

We will not be able to do this for all H, but via another outrageously cunning argument
(‘entropy decrement’) we will be able to find some suitable scale H ∈ [H−, H+] for which
we can prove such a bound.

Hoeffding’s inequality rescues something for us here straight away. Recalling that PH =∏
p∈PH p, note first that for all j and p we have

1

p
=

1

PH

∑
y′6PH

1p|y′+j.

We now fix the values of λ(n + j) for all j = 1, . . . , H, calling these values x = (x1, . . . , xH)
(which is a vector with ±1 entries). Having done this, let Ex denote the set of exceptional
residue classes y modulo PH for which∣∣∣ ∑

p∈PH

∑
j

j,j+p∈[1,H]

xjxj+p1p|y+j −
1

PH

∑
y′6PH

∑
p∈PH

∑
j

j,j+p∈[1,H]

xjxj+p1p|y′+j

∣∣∣ > ε2 H

logH
.
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We were hoping to prove Ex = ∅ for all x. This we can’t do, but we can show that |Ex| must
be exceedingly small. Precisely, we claim that

|Ex| 6 PH exp
(
− εO(1) H

logH

)
.

(To give you a sense of the relative scales involved, note that PH ≈ exp(ε2H/ logH) by the
prime number theorem.)

Why is this true? Consider the random variable y ∈ Z/PHZ uniformly distributed, and
let Zp denote the random variable

Zp :=
∑
j

j,j+p∈[1,H]

xjxj+p1p|y+j.

The family (Zp)p∈PH is independent by construction, and each random variable Zp is bounded
by O(ε−2) (since for all fixed values y = y there are at most O(ε−2) values of j that can
possibly contribute to the sum). Then the inequality we have claimed is just Hoeffding’s
inequality for suitable parameters, namely bounding

Py∼Unif(Z/PHZ)

(∣∣∣ ∑
p∈PH

Zp −
∑
p∈PH

EZp
∣∣∣ > |PH |).

Let’s begin to think about how we might use this result to control the overall average.
Letting XH be the random variable (λ(n+j))Hj=1, and YH be the random variable n mod PH ,
by the law of total expectation we have

E
∑
p∈PH

∑
j

j,j+p∈[1,H]

λ(n + j)λ(n + j + p)1p|n+j

=
∑

x∈(−1,+1)[H]

E
( ∑
p∈PH

∑
j

j,j+p∈[1,H]

λ(n + j)λ(n + j + p)1p|n+j

∣∣∣XH = x
)
P(XH = x)

=
∑

x∈(−1,+1)[H]

∑
y mod PH

( ∑
p∈PH

∑
j

j,j+p∈[1,H]

xjxj+p1p|y+j

)
P(XH = x)P(YH = y |XH = x).

We have two different types of contributions: y /∈ Ex and y ∈ Ex. Suppose one knew the
following lemma:

Lemma 16.1. We let x ∈ (−1,+1)[H] be good if, for all subsets S ⊂ Z/PHZ of size
|S| 6 PH exp(−ε10H/ logH), one has

P(YH = S |XH = x) = oH−→∞(1).

Then there exists a scale H ∈ [H−, H+] for which∑
x∈(−1,+1)[H]

x good

P(XH = x) = 1− oH−→∞(1).

Then the contribution from x not good is

�
∑

x∈(−1,+1)[H]

x not good

H

logH
P(XH = x)

∑
y mod PH

P(YH = y |XH = x),

as at most O(ε−2) values of j contribute to the sum, and this is

� H

logH

∑
x∈(−1,+1)[H]

x not good

P(XH = x) = oH−→∞(H/ logH),
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which is acceptable.
The contribution from good x is∑
x∈(−1,+1)[H]

x is good

∑
y mod PH

( ∑
p∈PH

∑
j

j,j+p∈[1,H]

xjxj+p1p|y+j

)
P(XH = x)P(YH = y |XH = x)

=
∑

x∈(−1,+1)[H]

x good

∑
y mod PH
y/∈Ex

( ∑
p∈PH

∑
j

j,j+p∈[1,H]

xjxj+p
p

)
P(XH = x)P(YH = y |XH = x) + A1 + A2,

where the error term A1 comes from the definition of Ex and satisfies

|A1| 6
∑

x∈(−1,+1)[H]

∑
y mod PH

(
ε2 H

logH

)
P(XH = x)P(YH = y |XH = x) 6 ε2 H

logH
,

which is acceptable, and A2 comes from the y ∈ Ex contribution and is bounded by

|A2| �
H

logH

∑
x∈(−1,+1)[H]

x is good

P(XH = x)P(YH ∈ Ex |XH = x)

� oH−→∞(H/ logH).

Regarding the main term, namely∑
x∈(−1,+1)[H]

x good

∑
y mod PH
y/∈Ex

( ∑
p∈PH

∑
j

j,j+p∈[1,H]

xjxj+p
p

)
P(XH = x)P(YH = y |XH = x),

one can use the same estimations as before to extend the ranges of summation to∑
x∈(−1,+1)[H]

∑
y mod PH

( ∑
p∈PH

∑
j

j,j+p∈[1,H]

xjxj+p
p

)
P(XH = x)P(YH = y |XH = x)

up to an acceptable error. This expression in turn is equal to∑
x∈(−1,+1)[H]

( ∑
p∈PH

∑
j

j,j+p∈[1,H]

xjxj+p
p

)
P(XH = x).

This is the expression we estimated in Lemma 15.5 last lecture, using the Matomäki–
Radziwi l l theorem. We derived a bound of � ε2 H

logH
, which is acceptable.

So it remains to prove the lemma, i.e. Lemma 16.1. In words, we’ve reduced the whole
theorem to trying to show that the weight of the sum∑

X/w<n6X

1

n

∑
p∈PH

∑
j

j,j+p∈[1,H]

λ(n+ j)λ(n+ j + p)

is not concentrated on some very small collection of residue classes n modulo PH . This is
essentially equivalent to proving some weak independence property of the random variables
XH and YH .

Tao’s method for proving Lemma 16.1 was highly original, using concepts from informa-
tion theory to locate the appropriate scale H. There were precedents for such an argument
in the additive combinatorics and ergodic theory literature, but this was the first time that
such ideas had appeared in analytic number theory in quite this fashion (though see the
Green–Tao theorem for another application of of an increment argument in analytic number
theory). Again, we stress that all the probabilities here may be written down explicitly in
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terms of sums, but one misses out on substantial intuition behind the manipulation.

In order to get ready for the proof, let’s make a short observation about what happens to
our random variables under small translations.

Lemma 16.2. Let r be a fixed integer with |r| 6 H+. Then for any complex valued random
variable X(n), depending on n and bounded in magnitude by O(1), one has

E(X(n)) = E(X(n + r)) + ow→∞(1).

Proof. This is exactly the same observation has we made when we introduced the summation
over j in the last lecture. The point is that

1

logw

∑
X/w<n6X

X(n+ r)

n
=

1

logw

∑
X/w+r<n6X+r

X(n)

n− r

=
1

logw

∑
X/w+r<n6X+r

(X(n)

n
+O

( H+

n(n+ r)

))
=

1

logw

∑
X/w<n6X

X(n)

n
+O

( H+

logw

)
.

�

A brief primer on entropy
For a discrete random variable X taking finitely many values, we will say that the Shannon

entropy H(X) is defined by

H(X) :=
∑
x

P(X = x) log
1

P(X = x)
,

with the convention that 0 log 1/0 = 0. One can think of H(X) as the amount of ‘informa-
tion’, or the amount of ‘randomness’, that is encoded in the random variable X. Entropy is
always non-negative, and H(X) is maximised among random variables with the same range
when X is uniformly distributed (this can be shown by Jensen’s inequality, and in fact the
uniform distribution is the unique maximiser). In this case H(X) = logN , where N is the
size of the range of X.

Given two random variables X and Y taking finitely many values we define the mutual
information

I(X,Y) := H(X) + H(Y)−H(X,Y).

One can think of I(X,Y) as the extra randomness that is present in both X and Y taken
separately, over and above what is contained in the joint distribution of (X,Y). One may
show that I(X,Y) > 0, and that I(X,Y) = 0 if and only if X and Y are independent. To
prove the first of these assertions, consider the conditional entropy

H(X|Y) :=
∑
y

P(Y = y)H(X|Y = y)

=
∑
y

P(Y = y)
∑
x

P(X = x |Y = y) log
1

P(X = x |Y = y)
.

By using Jensen’s inequality as applied to the concave function u 7→ u log 1/u, one concludes
that

H(X|Y) =
∑
x

∑
y

P(Y = y)P(X = x |Y = y) log
1

P(X = x |Y = y)
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6
∑
x

(∑
y

P(Y = y)P(X = x |Y = y)
)

log
((∑

y

P(Y = y)P(X = x |Y = y)
)−1)

=
∑
x

P(X = x) log
1

P(X = x)

= H(X).

(In words, X cannot contain more randomness when certain auxiliary information is fixed
than it can with no auxiliary information.) One then has the identity (easily proved) that

H(X,Y) = H(X|Y) + H(Y) = H(Y|X) + H(X),

and so
I(X,Y) = H(X)−H(X|Y) > 0.

We also conclude the subadditivity of entropy, namely

H(X,Y) 6 H(X) + H(Y).

Now, let us specialise to the case in hand. We know that the random variable XH

takes at most 2H values, and so H(XH) � H. We also know that for each y mod PH
we have P(YH = y) = P−1

H + ow→∞(1), so H(YH) = log(PH) + ow→∞(1) � H for large
enough parameters (crudely estimating PH as exp(O(H))). So the trivial upper bound is
I(X,Y)� H.

Our first lemma shows that a big enough improvement on this trivial bound will finish
the matter

Lemma 16.3. If I(XH ,YH) = oH−→∞(H/ logH) then Lemma 16.1 follows with this value
of H (and so the whole theorem follows too).

We’re not going to go through all of the proof of this lemma in lectures: not because the
proof is very difficult, but because the details are a little fiddly and tedious.

Start of a proof. We have∑
x

P(XH = x)(H(YH)−H(YH |XH = x)) = I(XH ,YH) = oH−→∞

( H

logH

)
.

Since
H(YH)−H(YH |XH = x) > logPH − ow→∞(1)− logPH = −ow→∞(1),

we conclude from Markov’s inequality that the probability in x that

H(YH)−H(YH |XH = x) = oH−→∞

( H

logH

)
is 1 − oH−→∞(1). Call such an x very good. It suffices to show that if x is very good
than x is good, in the sense of Lemma 16.1, i.e. that for all S ⊂ Z/PHZ with |S| 6
PH exp(−εO(1)H/ logH) one has P(YH ∈ S |XH = x) = oH−→∞(1).

We leave the rest as an exercise. See Lemma 3.3 of Tao’s original paper if you get
stuck. �

So we have to get control on the mutual information somehow. This seems hard to do
directly, but there is a critical observation that enables one to make progress; namely, if the
mutual information is large at scale H, i.e. if YH very nearly determines XH , then YH also
very nearly determines XkH (ultimately due to the translation invariance of the distribution
of YH). But this is a stronger statement for larger k, as one has a random variable that
potentially takes 2kH values being controlled by a different random variable that only takes
PH ≈ exp(ε2H/ logH) values. So XkH is less random than it might otherwise be, in the
sense that the entropy ratio H(XkH)/kH is smaller than the entropy ratio H(XH)/H.

This is the detailed lemma.
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Lemma 16.4 (Large mutual information implies entropy decrement). Provided w is large
enough, for all H ∈ [H−, H+] one has

H(XkH)

kH
6

H(XH)

H
− I(XH ,YH)

H
+O

(1

k

)
.

Proof. Fixed H,H1, H2 ∈ [H−, H+]. We temporarily define the random variable

XH1,H1+H2 := (λ(n + j))H1+H2
j=H1+1.

By the approximate translation invariance of the sum over n, one may show that

H(XH1,H1+H2) = H(XH2) + ow→∞(1).

So, by subadditivity of entropy, we have

H(XH1+H2) 6 H(XH1) + H(XH1,H1+H2) 6 H(XH1) + H(XH2) + ow→∞(1).

But by conditioning on YH one can get an improved inequality. Indeed, by subadditivity
again one has

H(XH1+H2|YH) 6 H(XH1|YH) + H(XH1,H1+H2|YH)

= H(XH1|YH) + H(XH1,H1+H2|YH +H1 mod PH),

just by translating the sum over y in the definition of the conditional entropy in the second
term. By translating n 7→ n −H1 and using the approximate translation invariance of the
measure, the above is in turn equal to

H(XH1 |YH) + H(XH2 |YH) + ow→∞(1).

So all in all we have

H(XH1+H2|YH) 6 H(XH1|YH) + H(XH2|YH) + ow→∞(1),

so in particular we have

H(XkH |YH) 6 kH(XH |YH) + oX→∞(1)

as long as H− 6 H 6 kH 6 H+. Overall, we end up with

H(XkH) = H(XkH |YH) + H(YH)−H(YH |XkH)

6 H(XkH |YH) + H(YH)

6 kH(XH |YH) + H(YH) + ow→∞(1)

= kH(XH)− kI(XH ,YH) + H(YH) + ow→∞(1).

The lemma now follows from dividing through by kH. �

Such an entropy decrement cannot continue indefinitely, as H(XkH)/kH > 0. This puts a
limit on how large the mutual information I(XH ,YH) can actually be. Making this precise,
one can locate an appropriate scale.

Lemma 16.5 (An appropriate scale). There exists a scale H ∈ [H−, H+] for which

I(XH ,YH) <
H

logH log log logH
= o
( H

logH

)
.

Proof. Suppose for contradiction that I(XH ,YH) > H
logH log log logH

for all H− 6 H 6 H+.

For some C and J to be picked later, let us recursively define the natural numbers

H− 6 H1 6 H2 6 · · · 6 HJ

by setting H1 := H− and

Hj+1 := HjbC logHj log log logHjc
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for all 1 6 j 6 J − 1. If H+ is sufficiently large, then HJ 6 H+, and if C is large enough
then (from our previous observations)

H(XHj+1
)

Hj+1

6
H(XHj)

Hj

− 1

2 logHj log log logHj

.

On the other hand, one can show that there is some large B (depending on C and H−) for
which

Hj 6 exp(Bj log j)

for all 2 6 j 6 J , which gives us

H(XHj+1
)

Hj+1

6
H(XHj)

Hj

− 1

2Bj log j log log(Bj log j)
,

for all 2 6 j 6 J .
Telescoping, we have

0 6
H(XHJ )

HJ

6
H(XH2)

H2

−
J∑
j=2

1

2Bj log j log log(Bj log j)
6 O(1)−

J∑
j=2

1

2Bj log j log log(Bj log j)
.

So
J∑
j=2

1

2Bj log j log log(Bj log j)
� 1.

But this sum diverges as J →∞, so this leads to a contradiction if J is sufficiently large. �

So we’ve found an appropriate scale H, and, after our large series of deductions, we’ve
finally proved the main theorem of this section!

Postlude

We’ve covered a lot of ground in this course! Not just in terms of the main theorems we
tackled, but also in terms of the number of different techniques from analytic number theory
that we had to learn in order to attack these problems. You have seen:

• Dirichlet convolution identities
• major arc/minor decompositions
• Vinogradov’s Type II bound
• expansion of congruence conditions in terms of multiplicative characters
• Van der corput B process (truncated poisson summation)
• Smoothing of sums
• L2-L∞ bounding technique (in the proof of Halasz’s theorem)
• Gauss sums and primitive characters
• Dirichlet’s approximation theorem
• Turan–Kubilius inequality
• Polya–Vinogradov inequality
• Ramaré’s identity
• Montgomery’s mean value theorem for Dirichlet polynomials
• Halasz–Montgomery mean value theorem for Dirichlet polynomials
• Halasz–Montgomery mean value theorem for Dirichlet polynomials supported on the

primes
• Telescoping identities
• Dyadic decompositions
• Adding extra averaging variables, by multiplicative decompositions and by additive

shifts
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• Properties of Granville–Soundararajan distance
• Probabilistic interpretations and entropy decrement
• Hoeffding’s inequality
• ...

not to mention any of the main theorems we have actually proved.

I hope you will find this to be a solid grounding for the rest of your careers in number
theory.
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